

SDL
Standard Drawing

Library
C Library Reference Manual

Rastergraf, Inc.
1810-J SE First St.

Redmond, OR 97756
(541) 923-5530

web: https://www.rastergraf.com
email: support@rastergraf.com

Release 3.6.2

November 15, 2006

SDL C Library Reference Manual 1

Notices

Trademarks mentioned in this manual are the property of their respective owners.

This manual is based in part on Xlib - C Language X Interface, Version 11, Release 6 which is
copyrighted material. This documentation is used under the terms of its copyright which grants
free use as noted below.

 Copyright © 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1994 X Consortium

 Permission is hereby granted, free of charge, to any person obtaining a copy of this

software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following conditions:

 The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILTY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT, IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 Except as contained in this notice, the name of the X Consortium shall not be used in

advertising or otherwise to promote the sale, use or other dealings in this Software without
prior written authorization from the X Consortium.

 Copyright © 1985, 1986, 1987, 1988, 1989, 1990, 1991 by Digital Equipment Corporation.
 Portions Copyright © 1990, 1991 by Tektronix, Inc.

 Permission to use, copy, modify and distribute this documentation for any purpose and

without fee is hereby granted, provided that the above copyright notice appears in all
copies and that both that copyright notice and this permission notice appear in all copies,
and that the names of Digital and Tektronix not be used in advertising or publicity
pertaining to this documentation without specific, written prior permission. Digital and
Tektronix makes no representations about the suitability of this documentation for any
purpose. It is provided "as is" without express or implied warranty.

SDL is distributed by Rastergraf, Inc under license from:

Curtiss-Wright Controls Embedded Computing Video and Graphics (formerly Peritek)

Copyright © 2006 Curtiss-Wright Controls, Inc.

All Rights Reserved

Permission is granted to licensed users of SDL to duplicate this manual for non-commercial uses

2 SDL C Library Reference Manual

Preface

This manual is a reference document for programmers using the Standard Drawing Library, SDL.
This manual provides a brief overview of SDL features and describes each function in the library.

SDL is licensed in object and source format for use with embedded systems and in other industrial
graphics hardware products. Although designed primarily for use with graphics boards from
Rastergraf, the source code format allows SDL to be easily ported to the many different products
in the marketplace.

The functions described in this manual represent the complete list of SDL library functions. Not all
functions may be implemented in all graphics board drivers.

SDL requires a system with an ANSI C compiler and operating system and processor with a linear
address space.

Permission is granted to licensed users to reproduce this manual for non-commercial uses. This
means that this manual may not be resold to third parties. It does mean that licensed users of
SDL may reproduce this manual for use in developing SDL programs, which may be included in a
product and subsequently sold.

SDL is the product of over 20 years of experience developing graphics products for industry and
we hope you will find it useful.

Please visit our web page at http://www.rastergraf.com for the latest information on our current
graphics products.

SDL C Library Reference Manual 3

Contents

Notices ..1

Preface ..2

Contents ..3

Standard Drawing Library (SDL) Overview..4

Graphics Programming Example...9

SDL C Function Summary...14

SDL C Function Reference..17

Appendix A: SDL Header Files ..95

Appendix B: SDL Fonts ...123

Appendix C: Function Code Size and Dependency Chart127

Appendix D: Cursors and Cursor Bitmaps...129

Appendix E: Video Capture Extensions...131

Video Capture Programming Example ..132

Video Capture Extensions C Function Summary...135

Index..181

4 SDL C Library Reference Manual

Standard Drawing Library (SDL) Overview

System Overview
The Standard Drawing Library, SDL, is a scaleable C graphics library designed for use with real-
time and non-real-time operating systems. SDL is small, compact, ROMable, and offers device
independent graphics functions for board level and embedded systems applications.

SDL is easy to use and provides a complete set of graphics primitives. These graphics primitives
can be extended by adding utility functions for specialized graphics tasks.

SDL is written in ANSI C and is supplied in library format, which means that its target code size
can be controlled by limiting the number of functions used in a given application. SDL has been
designed to run on any CPU and operating system that uses linear addressing and that is
supported by an ANSI C compiler and linker.

SDL includes a generic graphics driver module that provides the hardware specific routines
needed to interface to the graphics hardware in a user’s system. A graphics driver specification
is provided to customers licensing SDL in source format, allowing the customer to port SDL to the
specific graphics hardware in the customer’s system. SDL can be readily ported to a new system
by changing this one module. SDL, therefore, does not depend on any specific graphics
hardware, and versions of SDL can be used with VGA chips, EL panels, LCD displays, and most
other graphics devices.

SDL Feature Summary

• All graphics primitives are drawn as single pixel lines. Rectangles, polygons, circles, ellipses,
and chords can be filled with a solid color or stipple patterns

• Use with Motorola PowerPC Products: MVME160x, MVME260x,and MVME360x
• Use with Rastergraf Graphics Boards under Linux, VxWorks, OS9, and other real-time OSs
• Full Featured and Easy to Use
• Written in ANSI C and supplied in Library or Source format
• Scaleable, ROMable, and Minimal RAM usage
• Circles, Ellipses, and Arcs
• Filled Circles, Chords, Sectors, and Polygons
• Solid, wide solid, and dashed lines, polylines, and rectangles
• filled rectangles, polygons, ellipses, circles, sectors, and chords
• pixel blits to/from the display and host memory
• Solid and Pattern Fills – Pixel Processing
• Proportional and Fixed Width Fonts
• Clipping Rectangle and Logical Origin
• Screen to Screen and Host to Screen Image Copy
• Mouse and Keyboard Support
• Video Capture Extensions

SDL C Library Reference Manual 5

Colors
SDL can support most of the popular color configurations, including 16 color, 256 color, and true
color systems. The color configuration is determined by the graphics driver, which is configured to
match the graphics hardware used in the system. SDL maintains two colors, a foreground color
and background color, stored in variables. The colors are specified with the setForeground() and
setBackground() functions, which load the specified unsigned 32 bit pattern (representing the
color) into the corresponding variable.

Fill Style, Drawing Primitives, and Fills
All drawing primitives are affected by the current fill style. SDL offers three fill styles: (1) solid, (2)
stipple, (3) opaque stipple. For example, if stipple is the current fill style, a line would be drawn in
the pattern defined by the current stipple pattern. See setFillStyle() for more information.

Rectangles, circles, chords, sectors, ellipses, and polygons can be filled with a solid color,
stipple pattern, or opaque stipple pattern.
• Solid color fills use the current foreground color to fill the object.
• A binary pattern is used to specify a stipple pattern. Each bit in the binary pattern

corresponds to a pixel. When an object is filled with a stipple pattern, the ones in the pattern
are drawn in the current foreground color. The zeros in the pattern are not used and the
corresponding screen (or memory) locations are not modified.

• An opaque stipple fill uses the same binary pattern used by the stipple fill, except that both
the ones and zeros of the pattern are drawn in the corresponding foreground and background
colors.

• An offset is provided to allow a stipple pattern to start at any point in the pattern as opposed to
always starting at the beginning of the pattern. See setPatternOrigin().

Polygon Fill Rule
Polygons are often overlapped or grouped to create more complex graphics objects. How the
polygon is filled affects the resulting complex object, especially if pixel processing is used. To
provide the user some flexibility in this regard, polygons may be filled according to either the
WINDING or EVENODD rule. See setFillRule().

6 SDL C Library Reference Manual

Coordinate System
The coordinate system for SDL has the
origin in the upper left corner of the
screen. x increases to the right and y
increases downwards on the screen. A
clipping rectangle can be definedon the
display screen to limit where text and
graphics are drawn, and a logical origin,
which defaults to the screen origin can
be moved about the screen to make it
easy to position complex objects.

Logical Origin
The logical origin is a point on the screen that is used as the origin for drawing all graphics
primitives. The default is for the logical origin to be at the screen origin. The logical origin is a
useful feature as it allows a symbol such as a gauge that is drawn relative to zero to be redrawn at
a different screen location by simply changing the logical origin to the desired coordinates before
redrawing the symbol.

Clipping Rectangle
A clipping rectangle is used to limit all graphics to a rectangular area of the display screen
(memory). The default is for the clipping rectangle to be the same size as the entire screen,
thereby limiting memory writes to the range of memory allocated for the display. The clipping
rectangle is programmable in size and location. See setClipRect() for more information.

Scanned Images or Bitmaps
Scanned images or bitmaps can be displayed with SDL. Two colored images such as logos are
easily drawn with SDL as they can be written with the current foreground and background colors.
Colored images such as photographs have many colors and may require processing to match the
scanned colors with those available in the user’s system. If the user’s system is palette based, the
palette can be updated with the new colors provided with the scanned image, or the scanned
image colors can be modified to use the colors available in the user’s system.

Real-Time Applications and Code Size
For real-time applications, SDL graphics must be confined to a single task. The SDL task is
preemptible by other real-time tasks. Restricting SDL to a single task is necessary because SDL
does not directly support multi-tasking. Multi-tasking can be achieved by providing a task that
interfaces to SDL and that accepts inputs from other tasks. Interprocess communication must be
supported by the real-time operating system to allow the implementation of a multi-tasking SDL
application.

Pixel Processing
SDL supports replace, or, and, and xor pixel processing. For pixel processing to work, the
graphics driver must be able to generate read/modify/write memory cycles to and from the
graphics hardware memory.

+ y

0,0

Screen Origin

+ x

SDL Coordinate System

Display Screen

SDL C Library Reference Manual 7

Fonts
SDL provides 18 fonts, including both proportional and fixed width fonts. See Appendix B for a
description of the fonts included with SDL. Fonts can increase the code size significantly, as
some of the larger fonts can be 10k bytes or larger in size. For applications with limited memory
or ROM, fonts types should be used sparingly to limit SDL code size. Additional fonts are
available in separate font utility.

The user must specify the fonts to be included in the run time code at compile time. The selected
fonts must be included in the file, userinit.c. See initGraphics() for more information.

Text may be rotated as it is drawn on the display (see setTextDirection()).

SDL is Scaleable to Minimize Memory Requirements
SDL is scaleable, which means the user can select only the required graphics functions or group
of functions from the library to minimize memory usage.

SDL has been carefully designed so it can run from ROM with a minimum of RAM. For example,
for a 68040 processor, SDL currently requires about 30k bytes of code if all functions are used,
excluding fonts and user code. A practical application for this processor could be implemented
with 50k bytes of code.

Some functions, such as polygon fills, do require RAM to construct edge tables, etc. See
Appendix C for the code and RAM requirements of SDL functions for popular processors.

SDL will run on 8 bit, 16 bit, 32 bit, and 64 bit processors with linear address spaces. The size of
the target code produced with SDL will vary with the word size and architecture of the processor
used.

Graphics Driver
SDL is portable and can be used on a wide range of systems. To be portable, SDL uses a simple
graphics driver to interface SDL to the user’s graphics hardware, such as VGA display, Flat Panel,
etc. The Graphics Driver is a module in SDL and is the only part of SDL that is modified when
porting SDL to a new platform.

Graphics Driver YES, OS Driver NO
SDL requires a graphics driver to support the user’s graphics hardware, but does not require a
driver for the real-time operating system, as the SDL functions are merely linked with user code.
Thus, SDL can be used with any operating system using linear addressing and which is supported
with an ANSI C compiler and linker.

Performance
SDL runs on the host processor and its performance will vary depending on the processor used.
A 68040 class processor gives good graphics performance for industrial control applications.
Faster processors such as the 603 PowerPC give outstanding performance.

Multiple Pages of Video Memory, Multiple Output Devices
For output devices that have multiple pages of video memory (such the Rastergraf SVGA-based
boards), SDL offers functions to switch between pages, copy regions from one page to another,
and to have different display and drawing pages. More than one output device (or graphics board)
can be configured into the system by the user. The active device is selectable by a function call.
For example, on graphics hardware that supports it, this lets you switch between CRT and LCD
output. The graphics driver for the Rastergraf graphics boards also supports the overlay plane of
its VMEbus graphics boards.

8 SDL C Library Reference Manual

Multiple Video Modes
Most SDL drivers include support for multiple video modes, including different resolutions and
number of colors (see initGraphics()). The minimum resolution/colors for most drivers is 640x480
with 16 colors. The maximum resolution/colors depends on the graphics hardware used. Some
graphics cards support resolutions as high as 1600x1200 with 65 million (24-bit) colors.

Mouse and Keyboard Support
Many SDL drivers include low level support for an attached mouse and/or keyboard. Library
functions are available to check for pending mouse or keyboard events and to read the mouse and
keyboard. These functions may not be available with all drivers.

Video Capture Extensions
Available for hardware that supports video capture, the SDL Video Capture Extensions are a set
of functions that allow you to setup your hardware to capture (or grab) video fields and frames and
to display the video image with overlay or underlay graphics. Functions are available for specifying
the area to capture, to change the video input source, to scale or resize the video image and to
display a window into the image on the screen. See Appendix E: Video Capture Extensions for
more detail. The video capture extensions fully support the capture capabilities of the
display/capture boards available from Rastergraf.

Long Product Life
SDL offers hardware independent graphics functions, uses a simple graphics driver, and provides
for increased functionality by allowing the use of additional graphics utilities.

The obvious advantages of this product strategy include:
• Protecting the user’s investment in application code.
• Allowing additional functionality to be added when needed.
• Easy port of SDL to newer and faster processors.
• Sidestepping the problems associated with obsolete graphics hardware by using a simple

graphics driver that can be easily updated to work with new graphics devices.

How SDL C Library Functions are Used
Graphics applications using SDL source code to generate run time code, do so by compiling and
linking SDL source code and associated application code the same way the rest of the
applications code is developed.

For applications using a run time versions of SDL, the graphics functions are used the same way
as are the resident C functions supported by the user’s C compiler and linker. The application
code is compiled and SDL functions are linked with user code and loaded into memory for
execution. For ROMable code, the user’s compiler/linker must be capable of generating code that
can be placed in ROM.

For systems that support library archives, the compiled object files can be archived together into a
single file, which can then be linked with the user’s application.

SDL C Library Reference Manual 9

Graphics Programming Example

This example first draws a white bounding rectangle to simulate the edge of the video screen.
Next, it shows how to redefine the size and location of the clipping rectangle. It then draws a filled
rectangle within the clipping area and draws the text string Big Box under the red filled rectangle.
The filled rectangle is positioned so that part of it extends outside the clipping rectangle and is
therefore clipped as shown below in Figure 1.

This example shows:
1. How to draw the bounding rectangle.
2. How to draw a dashed rectangle simulating the clipping rectangle.
3. How to redefine the size and location of the clipping rectangle.
4. How to draw a filled rectangle.
5. How to draw a text string.

(1) How to draw the bounding rectangle.
The three include files, sdl.h, extern.h, and colors.h are required by most SDL programs,
as they contain constants, structure definitions, defines, and function prototypes. These
files are shown in Appendix A. The first thing this program does is initialize SDL and the
graphics hardware by calling initGraphics(). It then sets the foreground color to white with
setForeground(). Then the bounding rectangle is drawn with the rectangle() function,
outlining the edge of the 640h x 480v video screen.

(2) How to draw a dashed rectangle simulating the clipping rectangle.
Next, the foreground color is changed to green with setForeground() and the dashed line
style is set to on/off with setDashStyle(). The on/off dashed line will be drawn with green
dashes against the dark screen background. Double dashed lines could also be
specified, which would produce a two color dashed line. The dashed rectangle will be
drawn using the default dashed line pattern but the dash lengths could be redefined with

Clipping Rectangle
located at x=100, y=100,
Width=300, Height=300

Clipped portion of
 filled rectangle

Text StringBig Box

0,0

Bounding Rectangle
simulating the edge of
the video screen

Screen Origin

Filled Rectangle
Located at x=200, y=300
Height=100, Width=300

Figure 1: A Clipped Rectangle

10 SDL C Library Reference Manual

setDashPattern() if a different dashed line pattern was desired. The upper left corner of
the green dashed rectangle is located at x=100, y=100 and its width = height = 300. The
green dashed rectangle is drawn with dashedRectangle().

Next, a dashed red rectangle is drawn that extends to the right of the clipping area to
show the part of the filled rectangle (not drawn yet) that is clipped (not drawn) because it
falls outside the clipping rectangle. The foreground color is changed to red, and the red
dashed rectangle is drawn with dashedRectangle().

(3) Set the clipping rectangle.
The clipping rectangle defaults to the entire screen size, but can be resized and
positioned anywhere within the screen area. In this example, the clipping rectangle is
represented by the green dashed rectangle described above. The actual clipping
rectangle is defined with the setClipRec() function and takes the same parameters as the
dashedRectangle() function used above to outline the clipping rectangle. After the
clipping rectangle has been resized and positioned to coincide with the green dashed
rectangle, graphics can only be drawn within the clipping rectangle. Note that the smaller
red dashed rectangle could not be drawn at its current location once the clipping rectangle
has been defined. From this point on, the only drawing routine which can alter pixels
outside the clipping rectangle, without redefining the clipping rectangle, is the
clearScreen() routine.

(4) How to draw a filled rectangle.
The filled red rectangle is drawn using filledRectangle() and works much the same as the
dashedRectangle() function. The fill style is set to solid fill, which fills the rectangle with
the current foreground color, red. The filled rectangle is located at x=200, y=200 and is
300 pixels wide and 100 pixels high. This filled red rectangle overwrites the portion of the
dashed red rectangle within the clipping rectangle, leaving the right 100 pixels of the
dashed red rectangle unmodified. This unmodified portion of the dashed red rectangle
shows the part of the filled red rectangle that was clipped and did not get written.

(5) How to draw a text string.
The text string ‘Big Box’ is drawn below the filled rectangle. The text string is located at
x=300, y=325 and is drawn using the drawText() function. The color of the text is
determined by the current foreground color, which can be set with setForeground().

The text is drawn at a fixed location in this example, but other options are available. For
example, the width of the text string can be calculated by the getTextWidth() function,
allowing the text to be centered relative to a screen location. Sixteen font types are
available with SDL. This example uses the current font. See Appendix B for a description
of the SDL fonts.

SDL C Library Reference Manual 11

Listing of clip.c
/**/
/* STANDARD DRAWING LIBRARY */
/* */

/* Rastergraf, Inc. */
/* Used under license from CURTISS-WRIGHT CONTROLS, INC. */
/* COPYRIGHT (C) 2001 CURTISS-WRIGHT CONTROLS, INC. */
/* */
/* This software is licensed software subject to the terms of the */
/* Source Code License Agreement. Refer to the file LICENSE for details. */
/**/
/* FILE NAME : clip.c */
/* DESCRIPTION : Example program for setting clip rectangle */
/* AUTHOR : P. K. */
/* DATE CREATED : 8/3/95 */
/**/
/* This program is designed to show how clipping works in SDL.*/
/**/
#include <sdl.h> /* SDL root header file */
#include <extern.h> /* SDL header file containing global vars */
#include <colors.h> /* SDL color names equated to index values */

#define GREEN_RECTANGLE_X 100
#define GREEN_RECTANGLE_Y 100
#define GREEN_RECTANGLE_WIDTH 300
#define GREEN_RECTANGLE_HEIGHT 300

#define RED_FREC_X 200
#define RED_FREC_Y 200
#define RED_FREC_WIDTH 300
#define RED_FREC_HEIGHT 100

#define TEXT_X 300
#define TEXT_Y 325

void main(int argc,char **argv)
{
/* initialize the graphics hardware and setup SDL */
 initGraphics(argc, argv);

/* at this point in the program the clipping rectangle is the */
/* same size as the entire video screen. */

/* set the current foreground color */
 setForeground(White);

/* draw a bounding rectangle at the edges of the screen */
 rectangle(0,0,640,480);

/* set the current foreground color */
 setForeground(Green);

/* set the dashstyle to On/Off dashes */
 setDashStyle(ONOFF_DASH);

/* draw a dashed rectangle at the boundaries of where the clipping */
/* rectangle will be located. */
 dashedRectangle(GREEN_RECTANGLE_X, GREEN_RECTANGLE_Y,
 GREEN_RECTANGLE_WIDTH, GREEN_RECTANGLE_HEIGHT);

12 SDL C Library Reference Manual

/* set the current foreground color to Red */
 setForeground(Red);

/* draw a dashed rectangle the size of the Red Filled Rectangle */
 dashedRectangle(RED_FREC_X, RED_FREC_Y, RED_FREC_WIDTH,
 RED_FREC_HEIGHT);

/* set the clipping rectangle to coincide with the green */
/* dashed rectangle */
 setClipRect(GREEN_RECTANGLE_X, GREEN_RECTANGLE_Y,
 GREEN_RECTANGLE_WIDTH, GREEN_RECTANGLE_HEIGHT);

/* now that clipping rectangle has been redefined, draw the filled */
/* red rectangle and observe that the 100 pixels on the right side, */
/* represented by the dashed red rectangle, does not get drawn. */
 filledRectangle(RED_FREC_X, RED_FREC_Y, RED_FREC_WIDTH,
 RED_FREC_HEIGHT);

/* use default font */
 drawText(TEXT_X,TEXT_Y,"Big Box");

/* end graphics task */
 closeGraphics();

} /* end of main */

SDL C Library Reference Manual 13

Standard Drawing Library

C FUNCTIONS

14 SDL C Library Reference Manual

SDL C Function Summary

Function Name Description
void arc(int x, int y, int width, int height, int startAngle, int endAngle)
 Draw an elliptical arc with start and stop
void arc2(int x, int y, int width, int height, int startAngle, int angleExtent)
 Draw an elliptical arc with start and extent
int boardOK(void) Provide board status
void circle(int x, int y, int radius) Draw a circle
void clearScreen(void) Clears the display screen
void closeGraphics(void) Ends graphics task
void copyImage(int x, int y, int width, int height, int dx, int dy)
 Copy image from one region of display to
 another
void copyPageImage(int spage, int x, int y, int width, int height, int dpage, int dx, int dy)
 Copy image from region of one display
 page to another page
void copyPage(int spage, int dpage) Copy contents of one page to another
void dashedLine(int x0, int y0, int x1, int y1) Draw a dashed line
void dashedPolyline(int numPts, sPoint *ptr) Draw a dashed polyline
void dashedRectangle(int x, int y, int width, int height) Draw a dashed rectangle
void drawPixel(int x, int y) Write pixel at x,y
void drawText(int x, int y, char *string) Draw 8-bit text
void enableStereo(int onoff) Enable/disable stereo output
void ellipse(int x, int y, int width, int height) Draw an ellipse
void filledArc(int x, int y, int width, int height, int startAngle, int endAngle)
 Draw a filled sector or chord with start/end
void filledArc2(int x, int y, int width, int height, int startAngle, int angleExtent)
 Filled sector or chord with start/extent
void filledCircle (int x, int y, int radius) Draw a filled circle
void filledEllipse(int x, int y, int width, int height) Draw a filled ellipse
void filledPolygon(int numPts, sPoint *ptr) Draw a filled polygon
void filledRectangle(int x, int y, int width, int height) Draw a filled rectangle
void flushKeyboard(void) Flush the keyboard queue
void flushMouse(void) Flush the mouse queue
void getColor(int index, int *red, int *green, int *blue) Read color from palette
int getDisplayPageStatus(void) Get status of h/w address register
void getFontStruct(sFontStruct *fs) Get font parameters
unsigned char *getFrameBufPtr(void) Get pointer to graphics framebuffer
void getImage(int x, int y, int width, int height, unsigned char *buff)
 Copy image from display to host memory
void getMouseXY(int *mx, int *my) Get the current mouse location
unsigned long getPixel(int x, int y) Get the pixel at x,y

SDL C Library Reference Manual 15

SDL C Function Summary (con’t)

Function Name Description
int getTextWidth(char *string) Get width of ASCII text string
int initGraphics(int argc, char **argv) Initialize graphics hw and global data
void keyboardRead(unsigned short *kcode) Read a keycode from the keyboard queue
int keyboardReady(void) Check for enqueued keycodes
void line(int x0, int y0, int x1, int y1) Draw a line
void mouseCursorOn(int state) Turn mouse cursor ON or OFF
void mouseCursorXY(int mx, int my) Move mouse cursor to a new position
void mouseRead(sMouseEvent *mse) Read a mouse event from mouse queue
int mouseReady(void) Check for events in mouse queue
void mouseRect(int x, int y, int w, int h) Set window limits for mouse cursor
void mouseScale(int xscale, int yscale) Set scale factors for mouse cursor
int panelType(void) Report display panel type
void polyline(int numPts, sPoint *ptr) Draw a polyline
void putImage(unsigned char *buff, int width, int height, int x, int y)
 Copy image from host memory to display
void rectangle(int x, int y, int width, int height) Draw a rectangle
void setArcMode(int arcMode) SECTOR_MODE or CHORD_MODE
void setBackground(unsigned long color) Set the background color
void setClipRect(int x, int y, int width, int height) Set clipping rectangle
void setDashOffset(int dashOffset) (Re-)set offset into dash line pattern
void setDashPattern(int numDashes, unsigned char *dashList, int dashOffset)
 Set dashed line pattern
void setDashStyle(int dashStyle) ONOFF_DASH or DOUBLE_DASH
void setDisplayPage(int page) Set video memory page for display
void setFillRule(int fillRule) EVENODD or WINDING
void setFillStyle(int fillStyle) SOLID_FILL, STIPPLE_FILL, or
 OPAQUE_FILL
void setFont(int fontIndex) Set the current font
void setForeground(unsigned long color) Set current foreground color
void setGraphicsDevice(int devnum) Set current graphics display device
void setLineWidth(int width) Set line width
int setMode(char *args) Change video mode
void setMouseCursor(unsigned long csr_id, unsigned long color1, unsigned long color2)
 Set mouse cursor type and colors
void setMousePage(int page) Set video memory page for mouse display
void setMouseParam(int reg, int value) Set mouse configuration registers
void setOrigin(int x, int y) Set the logical origin
void setPanStart(int x, int y) Set display origin within the virtual window
void setPattern(sPattern *newPattern) Set stipple fill pattern
void setPatternOrigin(int x, int y) Set stipple fill pattern origin
void setPixelProcessing(int operation) REPLACE, AND, OR, or XOR

16 SDL C Library Reference Manual

SDL C Function Summary (con’t)

Function Name Description
void setTextDirection(int dir) Set text drawing direction to
 TXT_DIR_NORM, TXT_DIR_UP,
 TXT_DIR_RL , or TXT_DIR_DWN
void setTiming(float vfreq, float vblank, float vfporch, float vsync,
 float hblank, float hfporch, float hsync) Set custom video timing parameters
void setTransparency(int transparency) TRANSPARENT or OPAQUE
void setVirtualSize(int w, int h) Set size of the virtual graphics window
void setWritePage(int page) Set video memory page for drawing
void storeColor(int index, int red, int green, int blue) Update color palette
void syncControl(int hsync, int vsync) Override the default sync state to:

 SYNC_NORMAL, SYNC_LOW,
 SYNC_HIGH, or SYNC_OFF

SDL C Library Reference Manual 17

SDL C Function Reference

18 SDL C Library Reference Manual

 arc
NAME

arc - draws an elliptical arc

SYNOPSIS
void arc

(
int x, /*x-coord of bounding rectangle origin */
int y, /*y-coord of bounding rectangle origin */
int width, /*width of bounding rectangle */
int height, /*height of bounding rectangle */
int start_angle, /*start angle (in 32nds of a degree) */
int end_angle /*end angle (in 32nds of a degree) */
)

DESCRIPTION

This routine draws an elliptical arc (or circular if width=height). Each arc is specified by a
rectangle and two angles. The center of the circle or ellipse is the center of the rectangle,
and the major and minor axes are specified by the width and height of the rectangle.
Positive angles indicate counterclockwise direction, and negative angles indicate
clockwise motion. If the magnitude of either angle is greater than 360 degrees, it is set to
the angle modulo 360 degrees. The arc is drawn relative to the logical origin.

All drawing primitives are affected by the current fill style which is specified with
setFillStyle(). Use SOLID_FILL for drawing solid lines.

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

arc2(), filledArc()

x,y

End Angle

Start Angle

Height

Width

Elliptical Arc

SDL C Library Reference Manual 19

arc2
NAME

arc2 - draws an elliptical arc

SYNOPSIS
void arc2

(
int x, /*x-coord of bounding rectangle origin */
int y, /*y-coord of bounding rectangle origin */
int width, /*width of bounding rectangle */
int height, /*height of bounding rectangle */
int start_angle, /*start angle (in 32nds of a degree) */
int angle_extent /*angle extent (in 32nds of a degree) */
)

DESCRIPTION

This routine draws an elliptical arc (or circular if width=height). Each arc is specified by a
rectangle and two angles. The center of the circle or ellipse is the center of the rectangle,
and the major and minor axes are specified by the width and height of the rectangle.
Positive angles indicate counterclockwise direction, and negative angles indicate
clockwise motion. If the magnitude of start_angle is greater than 360 degrees, it is set to
the angle modulo 360 degrees. If the magnitude of angle_extent is greater than 360
degrees, it is truncated to 360 degrees. The arc is drawn relative to the logical origin.

All drawing primitives are affected by the current fill style which is specified with
setFillStyle(). Use SOLID_FILL for drawing solid lines.

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

arc(), filledArc2()

x,y

Angle Extent

Start Angle

Height

Width

Elliptical Arc

20 SDL C Library Reference Manual

 boardOK
NAME

boardOK – perform a simple board test

SYNOPSIS
int boardOK(void)

DESCRIPTION

This function performs a few simple board tests to verify the graphics board can be
accessed and the framebuffer memory can be read and written to.

RETURNS

int /* 1 on success, 0 on failure */

INCLUDE FILES

sdl.h

SEE ALSO

SDL C Library Reference Manual 21

boardTemp
NAME

boardTemp – report the board temperature

SYNOPSIS
int boardTemp(void)

DESCRIPTION

This function reports the temperature measured by the onboard LM75 temperature
sensor. This function is not available on all graphics boards.

RETURNS

int /* temperature in degrees C */

INCLUDE FILES

sdl.h

SEE ALSO

22 SDL C Library Reference Manual

 circle
NAME

circle - draws a circle

SYNOPSIS
void circle(int x, int y, int radius)

DESCRIPTION

This function draws a single line circle centered about x,y and of the radius specified. x,y
is relative to the logical origin.

All drawing primitives are affected by the current fill style which is specified with
setFillStyle(). Use SOLID_FILL for drawing solid lines.

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

filledCircle()

x

y

Radius

Circle

SDL C Library Reference Manual 23

clearScreen
NAME

clearScreen - clears the screen

SYNOPSIS
void clearScreen(void)

DESCRIPTION

This function clears the entire screen to black. The color for black must be specified in the
userinit.c file which is executed by initGraphics().

INCLUDE FILES

sdl.h, extern.h

24 SDL C Library Reference Manual

 closeGraphics
NAME

closeGraphics - closes the graphics task

SYNOPSIS
void closeGraphics(void)

DESCRIPTION

This routine is used to terminate graphics processing, and should be the last SDL function
used before any calls are made to the operating system to terminate the graphics task.
This routine is specific to the output graphics hardware and to the operating system being
used.

Failure to call closeGraphics() when exiting a graphics application may lead to
upredictable system operation.

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

initGraphics()

SDL C Library Reference Manual 25

copyImage
NAME

copyImage - copy area of display from one location to another

SYNOPSIS
void copyImage

(
int x, /* source upper left x-coord */
int y, /* source upper left y-coord */
int width, /* source width */
int height, /* source height */
int destx, /* destination upper left x-coord */
int desty /* destination upper left y-coord */
)

DESCRIPTION

CopyImage() copies a rectangular area of the display to another place on the display.

The image data is copied from and to the current write page (which may be different than
the current display page). The image is also clipped to the current clipping rectangle for
the source and destination rectangles.

INCLUDE FILES

sdl.h

SEE ALSO

copyPage(), copyPageImage(), getImage(), putImage()

left,top

right,bottom

(destx, desty)

26 SDL C Library Reference Manual

 copyPage
NAME

copyPage - copy one page of graphics memory to another page

SYNOPSIS
void copyPage

(
int src_page, /* source page number */
int dst_page /* destination page number */
)

DESCRIPTION

CopyPage() copies the contents of video RAM page src_page to video RAM page
dst_page. This function is only available for drivers that support mutliple video pages and
graphics hardware that physically has multiple pages of video memory.

The entire page is always copied, regardles of the current clipping rectangle.

INCLUDE FILES

sdl.h

SEE ALSO

copyImage(), copyPageImage(), getImage(), putImage()

SDL C Library Reference Manual 27

copyPageImage
NAME

copyPageImage - copy area of display from one page to another page

SYNOPSIS
void copyPageImage

(
int src, /* source video page */
int x, /* source upper left x-coord */
int y, /* source upper left y-coord */
int width, /* source width */
int height, /* source height */
int dst, /* destination video page */
int destx, /* destination upper left x-coord */
int desty /* destination upper left y-coord */
)

DESCRIPTION

CopyPageImage() copies a rectangular area of the source video page to location (destx,
desty) in a destination video page. Src and dst can refer to the same or different pages in
video memory.For Rastergraf VME graphics boards, both pages must be in the same
graphics channel.This function is only available for drivers that support mutliple video
pages and graphics hardware that physically has multiple pages of video memory.

The image is also clipped to the current clipping rectangle for the source and destination
rectangles.

INCLUDE FILES

sdl.h

SEE ALSO

copyImage(), copyPage(), getImage(), putImage()

28 SDL C Library Reference Manual

 dashedLine
NAME

dashedLine - draws a dashed line

SYNOPSIS
void dashedLine

(
int x0, /* x-coord of first endpoint */
int y0, /* y-coord of first endpoint */
int x1, /* x-coord of second endpoint */
int y1 /* y-coord of second endpoint */
)

DESCRIPTION

This routine draws a dashed line from (x0,y0) to (x1,y1). The coordinates are relative to
the logical origin. It uses the current dashed line pattern. The dashed line pattern is set
with the setDashPattern() function, which initializes an array of unsigned chars with the
pixel lengths of the two sections of the dashed line. Two styles of dashed lines are
possible, on/off and double dash, selected with the setDashStyle() function.

On/off dashed lines write the even array index values ([0], [2], [4], etc. that define the
dashed line pattern) in the current foreground color. The odd array index values ([1], [3],
[5], etc.) represent the number of pixels to skip. The result is that on/off dashed lines are
drawn in the foreground color and the gap part of the dashed line is not drawn (it is
skipped).

Double dashed lines draw both parts of the dashed line using the current foreground and
background colors. The odd array values [1], [3], [5] are drawn in the background color.
The result is a two color dashed line.

All drawing primitives are affected by the current fill style which is specified with
setFillStyle(). Use SOLID_FILL for drawing solid lines.

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

dashedPolyline(),setDashPattern(), setDashStyle(), setLineWIdth()

x1,y1 x1,y1

x0,y0 x0,y0

On/Off Dashed Line Double Dashed Line

SDL C Library Reference Manual 29

dashedPolyline
NAME

dashedPolyline - draws a dashed polyline

SYNOPSIS
void dashedPolyline

(
int num_pts, /*number of points in the array */
sPoint *ptr_to_coord_list /*pointer to array of points */
)

DESCRIPTION
This routine draws dashed lines between each pair of points in the array of sPoint
structures. It draws the lines in the order listed in the array. All coordinates are relative to
the logical origin. It uses the current dashed line pattern. The dashed line pattern is set
with the setDashPattern() function. Two styles of dashed lines are possible: on/off and
double dash. On/off dashed lines write the even array index values ([0], [2], [4], etc. that
define the dashed line pattern) in the current foreground color. The odd array index
values ([1], [3], [5], etc.) represent the number of pixels to skip. The result is that on/off
dashed lines are drawn in the foreground color and the gap part of the dashed line is not
drawn (it is skipped). Double dashed lines draw both parts of the dashed line using the
current foreground and background colors. The odd array values [1], [3], [5] are drawn in
the background color. The result is a two color dashed line.

All drawing primitives are affected by the current fill style which is specified with
setFillStyle(). Use SOLID_FILL for drawing solid lines.

The sPoint structure is defined as follows:

typedef struct tagPoint
{
short x;
short y;
} sPoint;

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

dashedLine(), setDashStyle(), setDashOffset(), setDashPattern(), setLineWidth()

x3,y3

x1,y1 x3,y3 x1,y1

x2,y2 x2,y2 x0,y0 x0,y0

On/Off Dashed Polyline Double Dashed Polyline

30 SDL C Library Reference Manual

 dashedRectangle
NAME

dashedRectangle - draws a dashed rectangle

SYNOPSIS
void dashedRectangle

(
int x, /* x-coord of upper left corner */
int y, /* y-coord of upper left corner */
int width, /* width */
int height /* height */
)

DESCRIPTION

This routine draws a dashed rectangle. The x and y coordinates are relative to the logical
origin. Depending on the current dash style, rectangles can be drawn with on/off or
double dashed lines. The dashed line pattern is set with the setDashPattern() function,
which initializes an array of unsigned chars with the pixel lengths of the two sections of the
dashed line. Two styles of dashed lines are possible, on/off and double dashed, selected
with the setDashStyle() function.

On/off dashed lines write the even array index values ([0], [2], [4], etc. that defines the
dashed line pattern) in the current foreground color. The odd array index values ([1], [3],
[5], etc.) represent the number of pixels to skip. The result is that on/off dashed lines are
drawn in the foreground color and the gap part of the dashed line is not drawn (it is
skipped). Double dashed lines draw both parts of the dashed line using the current
foreground and background colors. The odd array values [1], [3], [5] are drawn in the
background color. The result is a two color dashed line.

Double dashed lines draw both parts of the dashed line using the current foreground and
background colors. The result is a two color dashed line.

All drawing primitives are affected by the current fill style which is specified with
setFillStyle(). Use SOLID_FILL for drawing solid lines.

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

rectangle(), filledRectangle(), setDashOffset(), setDashPattern(), setDashStyle()

x,y x,y Width Width

Height Height

On/Off Dashed Rectangle Double Dashed Rectangle

SDL C Library Reference Manual 31

drawPixel
NAME

drawPixel - draws a pixel at x,y

SYNOPSIS
void drawPixel

(
int x, /* x-coord of pixel */
int y /* y-coord of pixel */
)

DESCRIPTION

This routine draws a pixel at the display coordinates x,y, relative to the logical origin.

This routine draws a single pixel using the current fill style (set by setFillStyle()) and uses
the foreground color when the fill style is solid color or stipple, and both the foreground
and background colors when the fill style is opaque stipple.

All drawing primitives are affected by the current fill style which is specified with
setFillStyle(). Use SOLID_FILL for drawing solid lines.

INCLUDE FILES

sdl.h, extern.h

SEE ALSO
getPixel()

32 SDL C Library Reference Manual

 drawText
NAME

drawText - draws a text string

SYNOPSIS
void drawText

(
int x, /* x-coord of text origin */
int y, /* y-coord of text origin */
char *string /* string to draw */
)

DESCRIPTION

This routine draws a string of ASCII coded characters starting at the specified location,
x,y. x,y is located relative to the logical origin and defines the location of the first
character. The character is positioned so that the left side of its bounding box is located
at x, and the character is positioned vertically so that its baseline sits on a horizontal line
located at y. string contains the ASCII string of text to be printed to the screen or graphics
output device.

Font glyphs are defined with a binary pattern. Ones in the character glyph are drawn in
the current foreground color. If transparency is on, only the ones are drawn and the zeros
in the glyph pattern are not drawn. If transparency is off, the ones are drawn in the
foreground color and the zeros in the glyph pattern are drawn in the background color.

The default is transparency on.

In adition to normal left to right text drawing, a text string may be drawn right to left, top to
bottom, or bottom to top. If text rotated by an arbitrary angle is required, use the optional
vector font or polygon font library.

All drawing primitives are affected by the current fill style which is specified with
setFillStyle(). Use SOLID_FILL for drawing solid lines.

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

setFont(), getTextWidth(), getFontStruct(), setTextDirection()

Descent

Ascent

Baseline Text String

x,y - First character is located at x,y

SDL C Library Reference Manual 33

ellipse
NAME

ellipse - draws an ellipse

SYNOPSIS
void ellipse

(
int x, /*x-coord of bounding rectangle origin */
int y, /*y-coord of bounding rectangle origin */
int width, /*width of bounding rectangle */
int height /*height of bounding rectangle */
)

DESCRIPTION

This routine draws a single line ellipse. The ellipse is located relative to the logical origin.

All drawing primitives are affected by the current fill style which is specified with
setFillStyle(). Use SOLID_FILL for drawing solid lines.

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

filledEllipse()

Height

Width

x,y

Ellipse

34 SDL C Library Reference Manual

 enableStereo
NAME

enableStereo – enable or disable stereo output

SYNOPSIS
void enableStereo

(
int state /* 1 = on, 0 = off */
)

DESCRIPTION

EnableStereo() enables or disables the special stereo output mode of the Borealis 3
graphics chip. The output format is alternating line. A control line toggles to indicate the
active line (left or right). The stereo image is comprised of a left image in the normal frame
buffer (page 0) and a right image in page 1. The graphics controller alternates outputting a
line from page 0, then a line from page 1, then the second line from page 0, and the
second line from page 1, etc.

Typically, this stereo format is usable only on head mounted displays (HMDs) with two
LCDs, or with an external line blanking device.

INCLUDE FILES

sdl.h

SEE ALSO

setWritePage ()

SDL C Library Reference Manual 35

filledArc
NAME

filledArc - draws a filled sector or chord

SYNOPSIS
void filledArc

(
int x, /* x-coord of bounding rectangle origin */
int y, /* y-coord of bounding rectangle origin */
int width, /* width of bounding rectangle */
int height, /* height of bounding rectangle */
int start_angle, /* start angle (in 32nds of a degree) */
int end_angle /* end angle (in 32nds of a degree) */
)

DESCRIPTION

This routine draws a filled sector or filled chord depending on the current filled arc mode,
set by setArcMode(). The arc portion is specified by a rectangle and two angles. The
center of the circle or ellipse is the center of the rectangle, and the major and minor axes
are specified by the width and height. Positive angles indicate counterclockwise motion,
and negative angles indicate clockwise motion. If the magnitude of either angle is greater
than 360 degrees, it is set to the angle modulo 360 degrees.

All drawing primitives are affected by the current fill style which is specified with
setFillStyle(). Use SOLID_FILL for drawing solid lines.

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

arc(), filledArc2(), setArcMode(), setFillStyle()

x,y

Filled Sector or Filled Chord

Width

Filled Sector

Height

End Angle Filled Chord

Start Angle

36 SDL C Library Reference Manual

 filledArc2
NAME

filledArc2 - draws a filled sector or chord

SYNOPSIS
void filledArc2

(
int x, /* x-coord of bounding rectangle origin */
int y, /* y-coord of bounding rectangle origin */
int width, /* width of bounding rectangle */
int height, /* height of bounding rectangle */
int start_angle, /* start angle (in 32nds of a degree) */
int angle_extent /* angle extent (in 32nds of a degree) */
)

DESCRIPTION

This routine draws a filled sector or filled chord depending on the current filled arc mode,
set by setArcMode(). The arc portion is specified by a rectangle and two angles. The
center of the circle or ellipse is the center of the rectangle, and the major and minor axes
are specified by the width and height. Positive angles indicate counterclockwise motion,
and negative angles indicate clockwise motion. If the magnitude of start_angle is greater
than 360 degrees, it is set to the angle modulo 360 degrees. If the magnitude of
angle_extent is greater than 360 degrees, it is truncated to 360 degrees.

All drawing primitives are affected by the current fill style which is specified with
setFillStyle(). Use SOLID_FILL for drawing solid lines.

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

arc2(), filledArc(), setArcMode(), setFillStyle()

x,y

Filled Sector or Filled Chord

Width

Filled Sector

Height

Angle Extent
Filled Chord

Start Angle

SDL C Library Reference Manual 37

filledCircle
NAME

filledCircle - draws a filled circle

SYNOPSIS
void filledCircle(int x, int y, int radius)

DESCRIPTION

This function draws a filled circle centered about x,y, and of the radius value specified. x,y
is relative to the logical origin. The circle can be filled with a solid color, a stipple fill, or an
opaque stipple fill. See setFillStyle().

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

circle(), setFillStyle()

Filled Circle

x

y

Radius

38 SDL C Library Reference Manual

 filledEllipse
NAME

filledEllipse - draws a filled ellipse

SYNOPSIS
void filledEllipse

(
int x, /* x-coord of bounding rectangle origin */
int y, /* y-coord of bounding rectangle origin */
int width, /* width of bounding rectangle */
int height /* height of bounding rectangle */
)

DESCRIPTION

This routine draws a filled ellipse. The ellipse is specified by a bounding rectangle with an
origin at x,y, relative to the logical origin. The center of the circle or ellipse is the center of
the rectangle, and the major and minor axes are specified by the width and height. The
ellipse is filled using the current fill style: solid, stipple, or opaque stipple.

INCLUDE FILES

sdl.h, extern.h

SEE ALSO
filledArc(), setFillStyle()

x,y

Height

Width

Filled Ellipse

SDL C Library Reference Manual 39

filledPolygon
NAME

filledPolygon - draws a filled polygon

SYNOPSIS
void filledPolygon

(
int ptscount, /* number of points in the array */
sPoint *points /* pointer to array of points in the path */
)

DESCRIPTION

This routine fills the polygon formed by the connected lines forming a closed path. If the
path is not closed, (ie the last line does not end where the first line started) the path is
closed automatically. All coordinates are relative to the logical origin.

The polygon is filled using the current fill style (set by setFillStyle()) and according to the
rule specified by the setFillRule() function. The foreground color is used for solid color
and stipple fills, and both the foreground and background colors are used for opaque
stipple fills.

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

polyline(), setFillRule(), setFillstyle(), setPattern()

x1,y1

x2,y2

x0,y0

x3,y3 x4,y4

Filled Polygon

40 SDL C Library Reference Manual

 filledRectangle
NAME

filledRectangle - draws a filled rectangle

SYNOPSIS
void filledRectangle

(
int x, /* x-coord of upper left corner */
int y, /* y-coord of upper left corner */
int width, /* width */
int height /* height */
)

DESCRIPTION

This routine draws a filled rectangle. The x and y coordinates are relative to the logical
origin, and specify the coordinates for the upper left corner of the rectangle.

The rectangle is filled using the current fill style (set by setFillStyle()) and uses the
foreground color for solid color and stipple fills, and both the foreground and background
colors for opaque stipple fills.

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

rectangle(), setFillStyle()

Height

Width x,y

Filled Rectangle

SDL C Library Reference Manual 41

flushKeyboard
NAME

flushKeyboard - flush the keyboard queue

SYNOPSIS
void flushKeyboard(void)

DESCRIPTION

FlushKeyboard() clears the keyboard queue on the graphics board of any key pushes.

INCLUDE FILES

drv/rgkeybd.h

SEE ALSO

keyboardRead(), keyboardReady()

42 SDL C Library Reference Manual

 flushMouse
NAME

flushMouse - flush the mouse queue

SYNOPSIS
void flushMouse(void)

DESCRIPTION

FlushMouse() clears the mouse queue on the graphics board of any mouse events.

INCLUDE FILES

drv/rgmouse.h

SEE ALSO

mouseRead(), mouseReady()

SDL C Library Reference Manual 43

getColor
NAME

getColor - reads an rgb color from color palette

SYNOPSIS
void getColor

(
int index, /* palette index */
int *red, /* points to save location for red */
int *green, /* points to save location for green */
int *blue /* points to save location for blue */
)

DESCRIPTION

This routine reads the rgb color values from the specified index value of the systems color
palette and stores the values at the addresses, red, green, and blue.

INCLUDE FILES

sdl.h, extern.h, colors.h

SEE ALSO

storeColor()

44 SDL C Library Reference Manual

 getFontStruct
NAME

getFontStruct - gets font parameters
SYNOPSIS

void getFontStruct
(
sFontStruct *fs /* pointer to structure with */
 /* font parameters */
)

DESCRIPTION

This routine fills in the structure, fs, with the parameters for the current font.

Proportionally spaced fonts typically fill in the fontAscent and fontDescent structure
members, while constant space fonts typically use minbounds.ascent and
minbounds.descent for the overall font ascent and descent values.

The FontStruct structure is defined as follows:
typedef struct tagFontInfo
{
short width, /* width of character in pixels */
 ascent, /* number of pixels above baseline */
 descent; /* number of pixels below baseline */
}sFontInfo, *spFontInfo;

typedef struct tagFontStruct
{
char fontName[12]; /* name of font */
unsigned long fontID; /* unique font identifier */
sFontInfo minbounds, /* smallest char dimensions */
 maxbounds; /* largest char dimensions */
unsigned short fontAscent; /* maximum font ascent */
unsigned short fontDescent; /* maximum font descent */
}sFontStruct, *spFontStruct;

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

drawText(), getTextWidth(), setFont()

SDL C Library Reference Manual 45

getFramebufPtr
NAME

getFramebufPtr – gets current value of the framebuffer pointer

SYNOPSIS
unsigned char *getFramebufPtr(void)

DESCRIPTION

This routine looks up the current value of the framebuffer pointer. This pointer is only valid
for the current device context. If the active graphics device is changed, or a different write
page is selected, the pointer may become invalid, so this function should be called again
to obtain the updated value.

RETURNS

unsigned char * /* pointer to framebuffer memory */

INCLUDE FILES

sdl.h

SEE ALSO

setGraphicsDevice(), setWritePage()

46 SDL C Library Reference Manual

 getImage
NAME

getImage - copy area of display to host memory

SYNOPSIS
void getImage

(
int x, /* source upper left x-coord */
int y, /* source upper left y-coord */
int width, /* source width */
int height, /* source height */
unsigned char *buff /* host memory buffer */
)

DESCRIPTION

GetImage() copies a rectangular area of the display to a host memory buffer pointed to by
buff. The user must allocate enough memory to contain the image. The amount of
memory, in bytes, can be calculated as:

 size = width * height;

In 256 color video modes, each pixel is stored as a single byte with a value from 0 to 255.
In 16 color video modes, each pixel is stored as a single byte with a value from 0 to 15.

The image source data is taken from the current write page and is clipped to the current
clipping rectangle.

INCLUDE FILES

sdl.h

SEE ALSO

copyImage(), copyPageImage(), putImage()

HOST
MEMORYx,y

Video Screen
(VRAM)

width

height

SDL C Library Reference Manual 47

getMouseXY
NAME

getMouseXY - get the current mouse location

SYNOPSIS
void getMouseXY

(
int *mx, /* pointer to returned mouse X position */
int *my /* pointer to returned mouse Y position */
)

DESCRIPTION

GetMouseXY() gets the current location of the mouse cursor.

The returned position is the location of the cursor “hot-spot” on the screen, based on
absolute screen coordinates.

INCLUDE FILES

drv/rgmouse.h

SEE ALSO

mouseRead(), mouseReady(), mouseCursorXY(), mouseRect(), mouseScale(),
setMouseParam()

48 SDL C Library Reference Manual

 getPixel
NAME

getPixel - gets pixel at x,y

SYNOPSIS
unsigned long getPixel

(
int x, /* pixel’s x coordinate*/
int y /* pixel’s y coordinate */
)

DESCRIPTION

This routine returns the value of the pixel at x,y. The x,y coordinates are relative to the
logical origin.

INCLUDE FILES

sdl.h, extern.h

RETURNS

unsigned long /* 32 bit value of pixel at x,y */

SEE ALSO

drawPixel()

SDL C Library Reference Manual 49

getTextWidth
NAME

getTextWidth - gets width of text string

SYNOPSIS
int getTextWidth

(
char *string /* string to measure */
)

DESCRIPTION

This routine returns the width in pixels of the null terminated text string pointed to by
string. Regardless of the current text drawing direction, getTextWidth() always returns the
width as if the string is drawn horizontally left to right. If passed a null string, it returns zero
for the length.

INCLUDE FILES

sdl.h, extern.h

RETURNS

int /* string_width, -1 on error */

SEE ALSO

drawText(), getFontStruct()

50 SDL C Library Reference Manual

 initGraphics
NAME

initGraphics - initializes SDL and the graphics hardware

SYNOPSIS
int initGraphics(int argc, char **argv)

DESCRIPTION

This routine initializes SDL and the graphics hardware by executing the code contained in
userinit.c. This file must be modified by the user to initialize the user’s system before
graphics processing can occur. Typically, userinit.c installs the selected fonts, initializes
the graphics hardware, and performs power up initialization required by the user’s system
to be able to run SDL. The argv parameters may be used to pass command line
arguments to initGraphics().

To modify the default parameters, the user must edit the file userinit.c, recompile it, and
link it.

Arguments passed to initGraphics() are driver specific. Currently, the only argument used
by all drivers is -v, which overides the video mode selection made in userinit.c. See the
include file sdl.h for a list of video modes. Using a value of -1, with the -v switch will print a
list of supported video modes. Using a flag of -h will print a help message showing
available options.

Since VxWorks does not generally support argc/argv style arguments, all options must be
passed as a single string as the first argument to initGraphics(). For example:

initGraphics(“-v 3 –C 1”, 0);

Some PowerPC boards use host bridges that support two independent PCI buses. In this
case, when using VxWorks, you must sometimes tell SDL when the graphics board is
installed on the second channel by using the “-C 1” option.

INCLUDE FILES

sdl.h, extern.h

RETURNS

int /* 0 on success, -1 on error */

SEE ALSO

closeGraphics()

SDL C Library Reference Manual 51

keyboardRead
NAME

keyboardRead - read keyboard character

SYNOPSIS
void keyboardRead(unsigned short *kdata)

DESCRIPTION

KeyboardRead() is a blocking call to read a character from the keyboard buffer. The
keycode is returned in the least significant byte of the short word pointed to by kdata. For
Rastergraf VME graphics boards, extended keycodes have the most significant byte of the
short word set to 0xff; standard keycodes have the most significant byte set to zero.

INCLUDE FILES

drv/rgkeybd.h

SEE ALSO

flushKeyboard(), keyboardReady()

52 SDL C Library Reference Manual

 keyboardReady
NAME

keyboardReady - check for keycodes in the keyboard queue

SYNOPSIS
int keyboardReady(void)

DESCRIPTION

KeyboardReady() is a non-blocking call to check if any characters are available in the
keyboard buffer.

INCLUDE FILES

drv/rgkeybd.h

SEE ALSO

flushKeyboard(), keyboardRead()

SDL C Library Reference Manual 53

line
NAME

line - draws a line

SYNOPSIS
void line

(
int x0, /* x-coord of first endpoint */
int y0, /* y-coord of first endpoint */
int x1, /* x-coord of second endpoint */
int y1 /* y-coord of second endpoint */
)

DESCRIPTION

This routine draws a single pixel line from (x0,y0) to (x1,y1). The coordinates are relative
to the logical origin. The line is drawn using the current fill style (set by setFillStyle()) and
and line width (set by setLineWidth()) uses the foreground color when the fill style is solid
color or stipple, and both the foreground and background colors when the fill style is
opaque stipple.

Wide lines are only available when the fill style is SOLID. A line width of 1 forces use of
the wide line function, while a line width of zero uses the optimized zero-width line drawing
functions.

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

polyline(), dashedLine(), setLineWidth()

x1,y1

x0,y0

Line

54 SDL C Library Reference Manual

 mouseCursorOn
NAME

mouseCursorOn - turn the mouse cursor on or off

SYNOPSIS
void mouseCursorOn

(
int state /* 1 = on, 0 = off */
)

DESCRIPTION

MouseCursorOn() turns the mouse cursor on and off. The cursor type can be changed by
using setMouseCursor(). The cursor position can be moved by using mouseCursorXY().
The screen contents under the cursor are automatically saved when the cursor is enabled
(state = 1) and restored when the cursor is disabled (state = 0).

When the mouse is enabled in the driver, the default mouse cursor is automatically
displayed. This function can be used to turn it off, then on again as required when
changing the mouse setup.

INCLUDE FILES

drv/rgmouse.h

SEE ALSO

getMouseXY(), mouseCursorXY(), mouseRead(), mouseReady(), mouseRect(),
mouseScale(), setMouseCursor(), setMouseParam()

SDL C Library Reference Manual 55

mouseCursorXY
NAME

mouseCursorXY - move the mouse cursor to a new position

SYNOPSIS
void mouseCursorXY

(
int x, /* new x-coord of position */
int y /* new y-coord of position */
)

DESCRIPTION

MouseCursorXY() changes the current x-y mouse address and specifies the starting point
for the mouse cursor on the screen. If the mouse cursor already being displayed, it is
repositioned to the x-y location specified.

The position is the location of the cursor “hot-spot” on the screen, based on absolute
screen coordinates.

INCLUDE FILES

drv/rgmouse.h

SEE ALSO

mouseCursorOn(), mouseRect(), mouseScale(),setMouseCursor(),
setMouseParam()

56 SDL C Library Reference Manual

 mouseRead
NAME

mouseRead - read a mouse event

SYNOPSIS
void mouseRead

(
sMouseEvent *mse /* pointer to returned mouse event */
)

DESCRIPTION

MouseRead() reads a single mouse event from the mouse queue into the event structure
mse. This is a blocking call that does not return until a mouse event has been read. Use
the non-blocking mouseReady() call to query if any events are in the queue. The
sMouseEvent structure is defined as:

typedef struct tagMouseEvent {
 short report_x; /* 'x' location on mouse input event */
 short report_y; /* 'y' location on mouse input event */
 unsigned short mouse_sw;/* switch image on mouse input event */
 unsigned short timer; /* free running 16 bit 'timer'
 when event occurred */
 short cursor_x; /* 'x' location (continuosly updated) */
 short cursor_y; /* 'y' location (continuosly updated) */
} sMouseEvent, *spMouseEvent;

The returned positions are the location of the cursor “hot-spot” on the screen, based on
absolute screen coordinates.

INCLUDE FILES

drv/rgmouse.h

SEE ALSO

flushMouse(), mouseReady(), getMouseXY()

SDL C Library Reference Manual 57

mouseReady
NAME

mouseReady - check for mouse events in the mouse queue

SYNOPSIS
int mouseReady(void)

DESCRIPTION

MouseReady() is a non-blocking call to check if any events available in the mouse queue.
It is used to check if an event is available before calling the blocking mouseRead()
function.

INCLUDE FILES

drv/rgmouse.h

RETURNS

Zero on success, non-zero on failure or when the mouse is not enabled in the driver.

SEE ALSO

flushMouse(), mouseRead()

58 SDL C Library Reference Manual

 mouseRect
NAME

mouseRect - set window limits for the mouse cursor

SYNOPSIS
void mouseRect

(
int x, /* upper left x-coord */
int y, /* upper left y-coord */
int width, /* width of bounding area */
int height /* height of bounding area */
)

DESCRIPTION

MouseRect() sets a boundary window for the mouse cursor. The mouse cursor movement
is pinned at the new window edges. The bounding rectangle is based on absolute screen
coordinates.

MouseRect() does not automatically set the MSECSR_WINDOW bit in mouse parameter zero.
This must be done using the setMouseParam() function when the boundary window is
smaller than the screen size.

INCLUDE FILES

drv/rgmouse.h

SEE ALSO

getMouseXY(), mouseCursorOn(), mouseCursorXY(), mouseScale(),
setMouseCursor(), setMouseParam()

SDL C Library Reference Manual 59

mouseScale
NAME

mouseScale - set scale factors for the mouse cursor

SYNOPSIS
void mouseScale

(
int xscale, /* scaling in x direction */
int yscale /* scaling in y direction */
)

DESCRIPTION

MouseScale() sets the scale factors used for the mouse cursor. Incoming mouse
movement is multiplied by the scale factors factors in calculating the updated mouse
cursor position. The scale factors are in a 16-bit fixed point format with 8-bit integer and 8-
bit fraction. The default scaling is +1.000 (0x0100).

INCLUDE FILES

drv/rgmouse.h

SEE ALSO

getMouseXY(), mouseCursorOn(), mouseCursorXY(), mouseRect(),
setMouseCursor(), setMouseParam()

60 SDL C Library Reference Manual

 panelType
NAME

panelType – report hardware configured display panel type

SYNOPSIS
int panelType (void)

DESCRIPTION
This function returns the display panel type as reported by the graphics hardware
configuration bits. The return value is driver specific.

INCLUDE FILES

sdl.h

RETURNS

int /* up to 32-bits of driver/hardware specific info */

SDL C Library Reference Manual 61

polyline
NAME

polyline - draws a polyline

SYNOPSIS
void polyline

(
int num_pts, /*number of points in the array */
sPoint *ptr_to_coord_list /*pointer to array of points */
)

DESCRIPTION

This routine draws lines connecting each pair of points in the array of sPoint structures. It
draws the lines, connecting the points in the order listed in the array. If the lines intersect,
the intersecting pixels are drawn again and pixel processing will behave accordingly. All
coordinates are relative to the logical origin.

The lines are drawn using the current fill style (set by setFillStyle())and line width (set by
setLineWidth()) and use the foreground color when the fill style is solid color or stipple,
and both the foreground and background colors when the fill style is opaque stipple.

Wide lines are only available when the fill style is SOLID. A line width of 1 forces use of
the wide line function, while a line width of zero uses the optimized zero-width line drawing
functions.

The sPoint structure is defined as follows:

typedef struct tagPoint
{
short x;
short y;
} sPoint;

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

line(), dashedPolyline(), setLineWidth()

x2,y2

x0,y0

x3,y3 x1,y1

Polyline

62 SDL C Library Reference Manual

 putImage
NAME

putImage - copy image in host memory to the display

SYNOPSIS
void putImage

(
unsigned char *buff, /* host memory buffer */
int width, /* source width */
int height, /* source height */
int x, /* destination upper left x-coord */
int y /* destination upper left y-coord */
)

DESCRIPTION

PutImage() copies an image in host memory to a rectangular area of the display. The host
memory buffer is a raw pixmap with one byte per pixel and pitch equal to the width of the
image.

Each byte in the source image represents a pixel color in the current color palette. In 256
color video modes, each pixel is a single byte with a value from 0 to 255. In 16 color video
modes, each pixel is a single byte with a value from 0 to 15.

The image data is drawn to the current write page and is clipped to the current clipping
rectangle.

INCLUDE FILES

sdl.h

SEE ALSO

copyImage(), copyPageImage(), getImage()

HOST
MEMORY x,y

Video Screen
(VRAM)

width

height

SDL C Library Reference Manual 63

rectangle
NAME

rectangle - draws a rectangle

SYNOPSIS
void rectangle

(
int x, /* x-coord of upper left corner */
int y, /* y-coord of upper left corner */
int width, /* width */
int height /* height */
)

DESCRIPTION

This routine draws a rectangle. The x and y coordinates are relative to the logical origin of
the screen.

The rectangle edges are drawn using the current fill style (set by setFillStyle())and line
width (set by setLineWidth()).

Wide lines for edges are only available when the fill style is SOLID. A line width of 1 forces
use of the wide line function, while a line width of zero uses the optimized zero-width line
drawing functions.

INCLUDE FILES

sdl.h, extern.h

SEE ALSO
filledRectangle(), dashedRectangle()

Height

Width x,y

Rectangle

64 SDL C Library Reference Manual

 setArcMode
NAME

setArcMode - specifies a filled arc to be a filled sector or filled chord

SYNOPSIS
void setArcMode

(
int fillMode /* 0==filled sector; 1==filled chord */
)

DESCRIPTION
This routine specifies what the filledArc() function will draw: a filled sector or filled chord.
The sector or chord can be filled with a solid color, stipple pattern, or an opaque stipple
pattern.
The arc modes are defined in sdl.h as follows:

define SECTOR_MODE 0
define CHORD_MODE 1

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

filledArc(), setFillStyle()

x,y

Filled Sector or Filled Chord

Width

Filled Sector

Height

End Angle Filled Chord

Start Angle

SDL C Library Reference Manual 65

setBackground
NAME

setBackground - sets the background color

SYNOPSIS
void setBackground

(
unsigned long color /* new background color */
)

DESCRIPTION

This routine sets the current background color by loading the global variable _bcolor with
the unsigned 32 bit value passed to it. The background color is used for the character cell
background color when transparency is off, for a stipple pattern background color, and for
dashed lines when double dash is specified. The value loaded into the global variable is
device dependent, and will be converted as necessary by the graphics driver to be
compatible with the graphics hardware.

Most graphics drivers support 8, 16, and 24 or 32 bit color values.

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

setForeground()

66 SDL C Library Reference Manual

 setClipRect
NAME

setClipRect - sets the clipping rectangle.

SYNOPSIS
void setClipRect

(
int x, /* x coordinate of clip origin */
int y, /* y coordinate of clip origin */
int width, /* width of clipping rectangle */
int height /* height of clipping rectangle */
)

DESCRIPTION

This routine sets the parameters of the clipping rectangle on the screen. All primitives are
clipped to this area. Height and width must be positive or zero. A width or height of zero
will prevent any graphics from appearing on the screen. The default clip rectangle is the
entire visible screen. The clipping rectangle is positioned relative to the screen
coordinates.

INCLUDE FILES

sdl.h, extern.h

Screen

Clip Rectangle

Height

Width

X 0,0

Y

Clip Rectangle

SDL C Library Reference Manual 67

setDashOffset
NAME

setDashOffset – sets a new pattern offset for dashed lines

SYNOPSIS
void setDashOffset

(
int dashOffset /* pixel offset for pattern start*/
)

DESCRIPTION

The dashOffset specifies the starting point from the beginning of the pattern in pixels.
This feature allows the user to specify where to start in the pattern. The dashed line
pattern does not restart each time it is used, allowing dashed lines to continue around the
corner of a rectangle, or polyline. The user has the option of restarting the pattern by
specifying a dashOffset value of zero.

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

setDashPattern(), setDashStyle()

68 SDL C Library Reference Manual

 setDashPattern
NAME

setDashPattern - specifies the dash line pattern for dashed lines

SYNOPSIS
void setDashPattern

(
int numDashes, /* number of entries in the dash list */
unsigned char *dashList, /* dash pattern list */
int dashOffset /* pixel offset for pattern start*/
)

DESCRIPTION

This routine specifies the pattern to be used for dashed lines. The first parameter,
numDashes, specifies the number of entries in the dashList. The dashList tells the line-
drawing routine the sequence of pixels to write and skip. If, for example, the dashList
contained [2,3,1,4], the line drawing routine would draw two pixels in the foreground color,
skip three, draw one, skip four, and then repeat the pattern until the line was completed,
assuming on/off was the active dashed line style. If double dashed was the active dashed
line style, the values in the even index locations ([0], [2], etc.) would be written in the
foreground color as before, and the values in the odd index locations ([1], [3], etc.) would
be written in the background color.

There must be at least one element in the specified dash list. All of the elements must be
nonzero.

The dashOffset specifies the starting point from the beginning of the pattern in pixels.
This feature allows the user to specify where to start in the pattern. The dashed line
pattern does not restart each time it is used, allowing dashed lines to continue around the
corner of a rectangle, or polyline. The user has the option of restarting the pattern by
specifying a dashOffset value of zero.

The number of entries in the list is limited to 255.

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

setDashOffset(), setDashStyle()

On/Off Dashed Pattern

Double Dashed Pattern

SDL C Library Reference Manual 69

setDashStyle
NAME

setDashStyle - specifies the dash line style, On/Off or Double Dash

SYNOPSIS
void setDashStyle

(
int dashStyle /* 0 == on/off; 1 == double dash */
)

DESCRIPTION
This routine specifies the dashed line style to be used for dashed lines.

On/Off dashed lines draw one color dashed lines. The foreground color is used.
Double Dashed lines are two color dashed lines. Both the foreground and background
colors are used.

The dash style is defined in sdl.h as:

#define ONOFF_DASH 0
#define DOUBLE_DASH 1

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

setDashOffset(), setDashPattern()

On/Off Dashed Pattern

Double Dashed Pattern

70 SDL C Library Reference Manual

 setDisplayPage
NAME

setDisplayPage - set the current display page

SYNOPSIS
void setDisplayPage

(
int pagenum /* graphics memory page number */
)

DESCRIPTION

SetDisplayPage() selects the page number (for graphics hardware with more than one
page of video memory) that is to be displayed. Page numbering starts at zero.

INCLUDE FILES

sdl.h

SEE ALSO

setWritePage()

SDL C Library Reference Manual 71

setFillRule
NAME

setFillRule - specifies the fill rule for polygon fills

SYNOPSIS
void setFillRule

(
int fillrule /* rule for filledPolygon */
)

DESCRIPTION

This routine specifies the fill rule to be used for filling polygons.

Specify 0 for EVENODD or 1 for WINDING. The default is EVENODD.

The fill-rule determines how self-intersecting polygons are filled, by defining which pixels
are inside (drawn). For EVENODD, a point is inside if an infinite ray originating at that point
as crosses the path an odd number of times. For WINDING, a point is inside if an infinite
ray originating at that point crosses an unequal number of clockwise and counterclockwise
directed path segments. A clockwise directed path segment is one that crosses the ray
from left to right as observed from the point. A counterclockwise segment is one that
crosses the ray from right to left as observed from the point. The case where a directed
line segment is coincident with the ray is uninteresting because you can simply choose a
different ray that is not coincident with a segment.

For both EVENODD and WINDING, a point is infinitely small, and the path is an infinitely
thin line. A pixel is inside if the center point of the pixel is inside and the center point is not
on the boundary. If the center point is on the boundary, the pixel is inside if and only if the
polygon interior is immediately to its right (x increasing direction). Pixels with centers on a
horizontal edge are a special case and are inside if and only if the polygon interior is
immediately below (y increasing direction).

The fill rule is defined in sdl.h, as:

#define EVENODD 0
#define WINDING 1

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

filledPolygon()

72 SDL C Library Reference Manual

 setFillStyle
NAME

setFillStyle - specifies a fill style of solid, stipple, or opaque stipple

SYNOPSIS
void setFillStyle

(
int fillStyle /* 0== solid, 1== stipple */
 /* 2==opaque stipple */
)

DESCRIPTION

This routine specifies the fill style for circles, ellipses, arcs (sectors and chords) polygons,
and rectangles. The fill style affects all other drawing primitives. For example, a line
will be drawn with the stipple pattern if the fill style is set to stipple.

Only the foreground color is used for solid or stipple fills. Both the foreground and
background colors are used for opaque stipple fills.

The fill style is defined in sdl.h as:

#define SOLID_FILL 0
#define STIPPLE_FILL 1
#define OPAQUE_FILL 2

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

filledPolygon(), filledRectangle(), filledArc()

SDL C Library Reference Manual 73

setFont
NAME

setFont - sets the current font

SYNOPSIS
void setFont

(
int fontIndex /* selects the current font */
)

DESCRIPTION

This routine selects the current font. This function takes as a parameter, the font name as
defined in fonts.h, or the corresponding index value for the font.

The user installs fonts by adding the font names to the global array _fontTable specified
in the file fonts.c.

The default fonts for SDL are shown below. Also see Appendix B.
#define HELVR12 0 /* Helvetica 12pt Normal Prop. Spaced */
#define HELVR08 1 /* Helvetica 8pt Normal Prop. Spaced */
#define HELVR10 2 /* Helvetica 10pt Normal Prop. Spaced */
#define HELVR14 3 /* Helvetica 14pt Normal Prop. Spaced */
#define HELVR18 4 /* Helvetica 18pt Normal Prop. Spaced */
#define HELVR24 5 /* Helvetica 24pt Normal Prop. Spaced */
#define CLR6X6 6 /* Clear 6x6 Normal Fixed Width */
#define CLR8X8 7 /* Clear 8x8 Normal Fixed Width */
#define CLR8X16 8 /* Clear 8x16 Normal Fixed Width */
#define FIX12X24RK 9 /* 12x24 Normal Fixed Width Roman-Kana */
#define HELVB14 10 /* Helvetica 14pt Bold Prop. Spaced */
#define HELVB18 11 /* Helvetica 18pt Bold Prop. Spaced */
#define HELVB24 12 /* Helvetica 24pt Bold Prop. Spaced */
#define HELVBO14 13 /* Helvetica 14pt BoldOblique Prop. Spaced */
#define HELVBO18 14 /* Helvetica 18pt BoldOblique Prop. Spaced */
#define HELVBO24 15 /* Helvetica 24pt BoldOblique Prop. Spaced */
#define RGBOLD36 16 /* Peritek Bold Fixed 36x78 */
#define RGSWISS44 17 /* Peritek Swiss Fixed 44x70 */

INCLUDE FILES

sdl.h, extern.h, fonts.h

SEE ALSO

drawText()

74 SDL C Library Reference Manual

 setForeground
NAME

setForeground - sets the current foreground color

SYNOPSIS
void setForeground

(
unsigned long color /* new foreground color */
)

DESCRIPTION

This routine sets the current foreground color. All primitives are drawn using the
foreground color. The actual value used for the color is hardware dependent. This
functions loads the 32 bit color parameter passed to it into the global variable _fcolor.

The graphics driver must convert the 32 bit color parameter to the appropriate value for
the display hardware. Most graphics drivers support 8, 16, and 24 or 32 bit color values.

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

setBackground()

SDL C Library Reference Manual 75

setGraphicsDevice
NAME

setGraphicsDevice - set the current graphics display device

SYNOPSIS
void setGraphicsDevice

(
int devnum /* graphics device number */
)

DESCRIPTION

SetGraphicsDevice() selects the graphics device for graphics hardware with more than
one channel, for systems with more than one graphics device installed or for graphics
hardware with multiple outputs formats, such as SVGA chips with CRT, LCD and/or video
outputs. Device numbering starts at zero and is driver specific.

All drawing primitives, keyboard operations and mouse operations apply to the currently
selected graphics device. When used to switch between multiple graphics devices, the
current display page, write page, clipping rectangle and mouse status is saved for each
graphics device to make the switching between multiple graphics devices as transparent
as possible.

Depending on the particular driver and graphics hardware used, the userinit.c file may
need to be edited to set the device addresses and other features that are unique for each
device.

The device ids used with typical PMC graphics boards defined in sdl.h as:

#define CRT_DEVICE 0x000001 /* default */
#define LCD_DEVICE 0x000002
#define NTSC_TV_DEVICE 0x000004
#define PAL_TV_DEVICE 0x000008

As of SDL version 3.1, additional support was added to support multiple graphics
controllers on a single graphics board, and multiple graphics boards in a system. The
following defines can be or’d together to select a specific board and controller
combination:

#define GDEV_0 0x000000 /* first (or only) graphics controller */
#define GDEV_1 0x000100 /* second graphics controller */
#define GDEV_2 0x000200 /* third graphics controller */
#define GDEV_3 0x000300 /* fourth graphics controller */

#define GBRD_0 0x000000 /* first (or only) graphics board */
#define GBRD_1 0x010000 /* second graphics board */
#define GBRD_2 0x020000 /* third graphics board */
#define GBRD_3 0x030000 /* fourth graphics board */

76 SDL C Library Reference Manual

As of SDL version 3.2, additional flags were added to support the dual channel display
engines in the SM731 and M9-based graphics boards. These flags are:

#define VP2CRTDAC 0x000010 /* VP engine feeds CRT DAC */
#define VP2DIGOUT 0x000020 /* VP engine feeds flat panel output */
#define VP2LVDS2 0x000040 /* VP engine feeds LVDS2 output */
#define NULL_DEVICE 0x000080 /* keep previous output settings */

INCLUDE FILES

sdl.h

SEE ALSO

setMode()

SDL C Library Reference Manual 77

setLineWidth
NAME

setLineWidth - sets the current line width

SYNOPSIS
void setLineWidth

(
int width /* new line width */
)

DESCRIPTION

This routine sets the current line width. All dashed and solid line primitives (line, polyline,
rectangle) use the line width when drawing lines. A line width of 1 may not be the same
as a line width of zero for diagonal lines as they use different low level functions to draw
the lines.

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

dashedLine(), dashedPolyline(), line(), polyline()

78 SDL C Library Reference Manual

 setMode
NAME

setMode - set displayed video mode and attributes

SYNOPSIS
int setMode

(
char *mode_args /* init args in string form */
)

DESCRIPTION

SetMode() is used to change the video mode (resolution and bits per pixel) of the currently
active graphics device. Other attributes, such as virtual width and height, refresh clock
frequency, etc., can also be set, depending on the specific graphics board and driver. This
function can be used (where supported) in place of calling closeGraphics() followed by
initGraphics() to reinitialize the board. The mode_args string is the list of initialization
arguments in string form.

SetMode() is usually used with the sm731 driver (Colos/Duros/Stratus/Tropos boards) to
set a different resolution on the second display channel. When the second channel is
initialized (via setGraphicsDevice()), it acquires the same video mode (resolution, bits per
pixel, etc.) as the primary channel, so by using setMode() the primary (flat panel) channel
can remain at its original resolution (say 1024x768) and the secondary CRT channel could
be configured to display a different image at say 640x480 resolution.

EXAMPLE
int myprog(int argc, char **argv)
{
 /* initialize main (FP) channel */
 if (initGraphics(argc, argv)) {
 printf(“initialization failed!\n”);
 return –1;
 }
 /* initialize VP channel */
 setWritePage(4); /* different memory region for channel 2 */
 setGraphicsDevice(GDEV_1|VP2CRTDAC);
 /* change VP video mode to 640x480x8 at 60 Hz */
 if (setMode(“-v 1 –c 60”))
 return –1; /* failed to change video mode */
 /* select FP channel again */
 setGraphicsDevice(GDEV_0|NULL_DEVICE);
 setWritePage(0); /* original memory region for channel 1 */
 :
}

INCLUDE FILES

sdl.h

RETURNS

int /* 0 on success, -1 on error */

SEE ALSO

closeGraphics(), initGraphics(), setGraphicsDevice()

SDL C Library Reference Manual 79

setMouseCursor
NAME

setMouseCursor - set mouse cursor type and colors

SYNOPSIS
void setMouseCursor

(
unsigned long csr_id, /* predefined cursor num. or addr */
unsigned long color1, /* bottom color of the cursor */
unsigned long color2 /* top color of the cursor */
)

DESCRIPTION

SetMouseCursor() selects one of the predefined mouse cursors, or a user defined cursor
symbol. If the value of csr_id is less than 128, it is assumed to be an index into the table of
default cursors; otherwise csr_id is assumed to be a pointer to a user defined cursor
structure which has been previously downloaded to the graphics board. A list of
predefined cursors is listed in Appendix D. The default cursor is a left arrow.

Only one mouse cursor is available per graphics device. If a mouse cursor is already on, it
must be turned off (using mouseCursorOn()) before calling this function, then turned on
again.

INCLUDE FILES

drv/rgmouse.h

SEE ALSO

getMouseXY(), mouseCursorOn(), mouseCursorXY()

80 SDL C Library Reference Manual

 setMousePage
NAME

setMousePage - set the mouse display page

SYNOPSIS
int setMousePage

(
int page /* graphics memory page */
)

DESCRIPTION

SetMousePage() sets graphics memory page that is used for displaying the mouse cursor.
The page always refers to the currently selected graphics device (if there is more than one
device in the system) and currently selected channel (underlay or overlay, if supported).

If the mouse cursor is already on, it must be turned off (using mouseCursorOn()) before
calling this function, then turned on again.

INCLUDE FILES

drv/rgmouse.h

SEE ALSO

mouseCursorOn(), mouseCursorXY(), mouseRead(), mouseReady(), mouseRect(),
mouseScale(), setGraphicsDevice(), setMouseCursor()

SDL C Library Reference Manual 81

setMouseParam
NAME

setMouseParam - set the mouse configuration parameters

SYNOPSIS
void setMouseParam

(
int pid, /* parameter id */
int value /* parameter value */
)

DESCRIPTION

SetMouseParam() sets mouse parameter pid to value value. The mouse parameters and
special defines for the bits in certain parameters are listed below. Use mouseScale() to
set the scale parameters and mouseRect() to set the window parameters.

If the mouse cursor is already on, it must be turned off (using mouseCursorOn()) before
calling this function, then turned on again.

/***/
/* MOUSE MODE PARAMETERS */
/***/
#define MSE_TRACKMODE 0 /* mouse position tracking mode */
#define MSE_REPORTMODE 1 /* mouse reporting mode */

/**/
/* bit fields and values of selected parameters */
/**/

/* mouse parameter 0 (tracking mode) */
/* default is (MSECSR_LOCALTRACK | MSECSR_LOCALSAVE) */
#define MSECSR_HOSTTRACK 0x00 /* cursor pos controlled by the host */
#define MSECSR_LOCALTRACK 0x01 /* cursor pos controlled by graphics hw */
#define MSECSR_PIN 0x00 /* cursor sticks at boundary */
#define NSECSR_WRAP 0x02 /* cursor wraps to other side of boundary */
#define MSECSR_SCREEN 0x00 /* cursor confined to screen boundaries */
#define MSECSR_WINDOW 0x04 /* cursor confined to window boundaries */
#define MSECSR_NOSWAPXY 0x00 /* no swap of mouse X, Y coordinates */
#define MSECSR_SWAPXY 0x08 /* swap X, Y mouse cursor movement */
#define MSECSR_HOSTSAVE 0x00 /* cursor save/res done by host */
#define MSECSR_LOCALSAVE 0x10 /* cursor save/res done by graphics hw */

/* mouse parameter 1 (report mode) */
/* these can be OR’d together - the default is MSE_SWITCHON */
#define MSE_NOEVENTS 0 /* no reports */
#define MSE_SWITCHON 1 /* report on switch closure */
#define MSE_SWITCHOFF 2 /* report on switch release */
#define MSE_SWITCHONOFF 3 /* report on switch closure or release */
#define MSE_MOVE 4 /* report all movement */
#define MSE_MOVE_SWON 8 /* report all movement while any switch closed */

INCLUDE FILES

drv/rgmouse.h

SEE ALSO

mouseCursorOn(), mouseCursorXY(), mouseRead(), mouseReady(), mouseRect(),
mouseScale(), setMouseCursor(), setMousePage()

82 SDL C Library Reference Manual

 setOrigin
NAME

setOrigin() - sets the logical origin

SYNOPSIS
void setOrigin

(
int x, /* x coordinate */
int y /* y coordinate */
)

DESCRIPTION

This routine sets the logical origin. All graphics primitives are drawn relative to the logical
origin.

The default value is for the logical origin to be located at the screen origin.

A graphics object, such as a gauge, can be drawn relative to 0,0 and can subsequently be
redrawn at a different screen location by simply changing the logical origin to the new
location before redrawing the gauge.

INCLUDE FILES

sdl.h, extern.h

Screen
Origin 0,0

Screen Logical Origin

X=100

0,0 Y=80

Logical Origin at x=100, y=80

SDL C Library Reference Manual 83

setPanStart
NAME

setPanStart() - sets the display origin within the virtual window

SYNOPSIS
void setPanStart

(
int x, /* x coordinate */
int y /* y coordinate */
)

DESCRIPTION

This routine sets the origin of the displayed window, within a larger virtual window. The
default value is for the display origin to be located at the upper left corner of the virtual
window.

A large graphics object, or multiple graphics objects, can be drawn beyond the physical
display size with setPanStart() called to pan the display to make different portions of the
virtual window visible.

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

setVirtualSize()

Virtual
Window 0,0

640x480 ScreenScreen Origin
X=384

Y=436

Pan Start at x=384, y=436

1023,915

1023,1023

84 SDL C Library Reference Manual

 setPattern
NAME

setPattern() - specifies the current stipple fill pattern

SYNOPSIS
void setPattern

(
sPattern *newpattern /* Pointer to stipple pattern */
)

DESCRIPTION

Use this function to specify the current stipple pattern for use with both stipple and opaque
stipple fills. The stipple pattern must be created and placed at the corresponding memory
location by the user.

The following can be filled with a stipple pattern: filled polygons, filled circles, filled
ellipses, filled arcs, and filled rectangles.

Text and lines are also drawn with the stipple pattern if stipple or opaque stipple is
selected as the current fill style.

The stipple fill pattern is limited to 16 pixels wide maximum, but the width can be any
value from 1 to 16. The height of the pattern can be any value from 1 to 255. The stipple
pattern is a binary pattern. The ones in the pattern are expanded to the foreground color.
For opaque stipple fills, the zeros in the pattern are expanded to the background color.

All drawing primitives are affected by the current fill style which is specified with
setFillStyle(). Use SOLID_FILL for drawing solid lines.

The sPattern structure is defined as follows:

typedef struct tagPattern
{
 int width;
 int height;
 unsigned short *data;
}sPattern, *spPattern;

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

setPatternOrigin(), setFillStyle()

SDL C Library Reference Manual 85

setPatternOrigin
NAME

setPatternOrigin - sets stipple fill pattern origin

SYNOPSIS
void setPatternOrigin

(
int x, /* start location in x from pattern edge */
int y /* start location in y from pattern edge */
)

DESCRIPTION

Use this function to set the pattern origin in x and y from the pattern edge.

The default coordinates for the pattern origin is x=0, y=0. As a pattern is drawn the
coordinates of the pattern continue to increment, modulo whatever the pattern dimensions
(in pixels) are.

Use the setPatternOrigin() to reset the pattern coordinates to zero, thereby causing the
stipple pattern to be drawn starting at the beginning of the pattern. A stipple pattern is
shown twice below, each with a different origin, indicating the starting point of the pattern.

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

setPattern()

Pattern starts here
Pattern starts here

x=0 x=1

y=0

y=2

Pattern Origin = 1,2 Pattern Origin = 0,0
Default Coordinates

86 SDL C Library Reference Manual

 setPixelProcessing
NAME

setPixelProcessing - sets pixel processing, replace, and, or, xor

SYNOPSIS
void setPixelProcessing

(
int operation /* 0 == replace*/
) /* 1 == and */
 /* 2 == or */
 /* 3 == xor */

DESCRIPTION

This function specifies the boolean operation for pixel processing. Pixel processing
operates on the color index values, not on the color data stored in the color lookup table.
If the color mode is true color, then pixel processing operates on the actual pixel values,
because they are not index values. For a palette based system, the pixel color value is an
index into a color lookup table.

The pixel processing types are defined in sdl.h as follows:

#define REPLACE 0
#define AND 1
#define OR 2
#define XOR 3

Invalid processing values are set to REPLACE.

INCLUDE FILES

sdl.h, extern.h

SDL C Library Reference Manual 87

setTextDirection
NAME

setTextDirection - sets the current drawing direction for text

SYNOPSIS
void setTextDirection

(
int dir /* new direction */
)

DESCRIPTION

This routine sets the current direction for drawing text on the display. Text may be drawn
left to right, right to left, top to bottom, or bottom to top on a character basis. The default is
left to right.

Proportionally spaced text is left justified on the bounding rectangle of the glyph even
when drawing vertically. This may cause the text to be non-centered. A fixed width font is
generally better for this application.

The text direction is defined in sdl.h as:

#define TXT_DIR_NORM 0
#define TXT_DIR_UP 1
#define TXT_DIR_RL 2
#define TXT_DIR_DWN 3

INCLUDE FILES

sdl.h, extern.h

SEE ALSO

drawText()

Left to Right

Right to Left

Up (bottom
to top)

Down (top to
bottom)

THE QUICK BROWN FOX XOF NWORB KCIUQ EHT

I
U
Q

E
H
T
 T

H
E

Q
U
I
C
K

88 SDL C Library Reference Manual

 setTiming
NAME

setTiming - sets custom video timing

SYNOPSIS
int setTiming

(
float vfreq, /* vertical frequency (in Hz) */
float vblank, /* vertical blanking width */
float vfporch, /* vertical front porch width */
float vsync, /* vertical sync width */
float hblank, /* horizontal blanking width */
float hfporch, /* horizontal front porch width */
float hsync /* horizontal sync width */
)

DESCRIPTION

This function provides means to adjust the video timing to match a particular display
monitor. This function may be called at any time after a successful initGraphics() call.

The vertical timing values, other than the vertical frequency, are specified in milliseconds.
Horizontal timing values are specified in microseconds. This function is not available with
the RG-101 driver.

INCLUDE FILES

sdl.h, extern.h

RETURNS

int /* 0 on success, -1 on error */

SEE ALSO

initGraphics()

SDL C Library Reference Manual 89

setTransparency
NAME

setTransparency - sets the text transparency mode

SYNOPSIS
void setTransparency

(
int transparency /* 0 == transparency off */
) /* 1 == transparency on */

DESCRIPTION

This function turns transparency on or off.

Transparency applies only to text. If on, only the ones of the character glyph are drawn.
They are drawn in the foreground color. If transparency is off, both the ones and zeros of
the character glyph are drawn. The ones are drawn in the foreground color, and the zeros
are drawn in the background color.

Transparency should be used for proportionally spaced fonts, because the background
cell varies from character to character. To place a background behind proportionally
spaced fonts, first draw a filled rectangle with the desired color and then write the text into
the rectangular area. Transparency enabled is the default mode.

The transparency modes are defined in sdl.h as:

#define OPAQUE 0 /* Transparency off */
#define TRANSPARENT 1 /* Transparency on */

INCLUDE FILES

sdl.h, extern.h

Transparency off

Transparency on

90 SDL C Library Reference Manual

 setVirtualSize
NAME

setVirtualSize() - sets the display origin within the virtual window

SYNOPSIS
void setVirtualSize

(
int width, /* window width */
int height /* window height */
)

DESCRIPTION

SetVirtualSize() provides a means to specify a virtual window larger then the physcial
display or screen size. For instance, a 1024x1024 virtual window can be created in the
framebuffer memory using a 640x480 physical display size. The entire virtual window is
available for rendering graphics objects, with the physical display providing a smaller
visible window into the virtual window. SetPanStart() is used to move the origin of the
visible displayed window.

Note: if a virtual window is desired, this function must be called prior to the call to
initGraphics(). Once set, the size of the virtual window can not be changed during the
graphics session.

INCLUDE FILES

sdl.h

SEE ALSO

setPanStart()

SDL C Library Reference Manual 91

setWritePage
NAME

setWritePage - set the current write page

SYNOPSIS
void setWritePage

(
int pagenum /* graphics memory page number */
)

DESCRIPTION

SetWritePage() selects the page number (for graphics hardware with more than one page
of video memory) that is to be written to. Page numbering starts at zero.

INCLUDE FILES

sdl.h

SEE ALSO

setDisplayPage()

92 SDL C Library Reference Manual

 storeColor
NAME

storeColor - writes an rgb value to the color palette

SYNOPSIS
void storeColor

(
int index,
int red,
int green,
int blue
)

DESCRIPTION

This function writes the three rgb values specified to the system’s color palette at the
index specified. Use this function to update a single color entry in the palette, or to update
the entire palette with repeated calls to this function.

INCLUDE FILES

sdl.h

SEE ALSO

getColor()

SDL C Library Reference Manual 93

syncControl
NAME

syncControl – overrides the default horizontal and vertical sync state

SYNOPSIS
void syncControl

(
int hsync, /* horiz sync state */
int vsync /* vert sync state */
)

DESCRIPTION

This routine provides a method to set the video sync signals to a fixed state. This could
be used to manually implement Display Power Management (DPMS) to force the display
monitor into a standby or off state. Not all drivers may implement this function or all
possible sync states.

The sync state is defined in sdl.h as:

#define SYNC_NORMAL 0
#define SYNC_LOW 1
#define SYNC_HIGH 2
#define SYNC_OFF 3
#define SYNC_INVERT 4

VESA Display Power Management States:

DPMS State Vsync Hsync
Normal SYNC_NORMAL SYNC_NORMAL
Standby SYNC_NORMAL SYNC_OFF
Suspend SYNC_OFF SYNC_NORMAL
Off SYNC_OFF SYNC_OFF

INCLUDE FILES

sdl.h

SEE ALSO

SDL C Library Reference Manual 95

Appendix A: SDL Header Files

sdl.h

/* ===== $Id: sdl.h,v 1.104 2005/01/03 16:09:50 billr Exp $ ===== */
/**/
/* STANDARD DRAWING LIBRARY */
/* */
/* Rastergraf, Inc. */
/* Used under license from CURTISS-WRIGHT CONTROLS, INC. */
/* COPYRIGHT (C) 2001 CURTISS-WRIGHT CONTROLS, INC. */
/* */
/* This software is licensed software subject to the terms of the */
/* Source Code License Agreement. Refer to the file LICENSE for details. */
/**/
/* FILE NAME :sdl.h */
/* DATE CREATED:6/8/95 */
/* PROJECT NAME:SDL */
/* DESCRIPTION :contains global variables, prototypes and structure defs */
/* AUTHOR :BR */
/* REVISIONS : */
/* NOTES : */
/* STRUCTURES :Point */
/* Rectangle */
/* Pattern */
/* FontInfo */
/* FontStruct */
/* geCharInfo */
/* RGFontInfo */
/* RGFont */
/**/

#ifndef SDL_H
define SDL_H

#ifdef __cplusplus
extern "C" {
#endif

#ifndef FALSE
define FALSE 0
define TRUE !FALSE
#endif

#ifndef NULL
define NULL (void*)0
#endif

/* HANDY MACROS */
#ifndef MAX
define MAX(_a,_b) (((_a) > (_b)) ? (_a) : (_b))
#endif
#ifndef MIN
define MIN(_a,_b) (((_a) < (_b)) ? (_a) :(_b))
#endif

96 SDL C Library Reference Manual

SDL Header Files

sdl.h, Continued

/* pixel processing codes */
#define REPLACE 0
#define AND 1
#define OR 2
#define XOR 3

/* FILL RULES FOR POLYGONS */
#define EVENODD 0
#define WINDING 1

/* TRANSPARENCY FLAG (used only for text) */
#define OPAQUE 0
#define TRANSPARENT 1

/* DASH LINE STYLES */
#define ONOFF_DASH 0
#define DOUBLE_DASH 1

/* FILL STYLES */
#define SOLID_FILL 0
#define STIPPLE_FILL 1
#define OPAQUE_FILL 2 /* not available on two color systems! */

/* ARC MODES */
#define SECTOR_MODE 0
#define CHORD_MODE 1

/* TEXT DRAWING DIRECTION */
#define TXT_DIR_NORM 0
#define TXT_DIR_UP 1
#define TXT_DIR_RL 2
#define TXT_DIR_DWN 3

/* VIDEO MODES - not all modes are supported by all drivers */
#define MODE_MASK 0x0ff /* allows for 256 video modes */
#define M640X480X4 0 /* 640h x 480v x 4 bpp */
#define M640X480X8 1 /* 640h x 480v x 8 bpp */
#define M800X600X4 2 /* 800h x 600v x 4 bpp */
#define M800X600X8 3 /* 800h x 600v x 8 bpp */
#define M1024X768X4 4 /* 1024h x 768v x 4 bpp */
#define M1024X768X8 5 /* 1024h x 768v x 8 bpp */
#define EL_VIDEO 6 /* RGI EL/LCD boards only */
#define M1152X900X8 7 /* 1152h x 900v x 8 bpp */
#define M1280X1024X8 8 /* 1280h x 1024v x 8 bpp */
#define M1600X1200X8 9 /* 1600h x 1200v x 8 bpp */
#define M640X480X15 10 /* 640h x 480v x 15/16 bpp */
#define M640X480X16 10 /* 640h x 480v x 15/16 bpp */
#define M800X600X15 11 /* 800h x 600v x 15/16 bpp */
#define M800X600X16 11 /* 800h x 600v x 15/16 bpp */
#define M1024X768X15 12 /* 1024h x 768v x 15/16 bpp */
#define M1024X768X16 12 /* 1024h x 768v x 15/16 bpp */
#define M1152X900X15 13 /* 1152h x 900v x 15/16 bpp */
#define M1152X900X16 13 /* 1152h x 900v x 15/16 bpp */
#define M1280X1024X15 14 /* 1280h x 1024v x 15/16 bpp */

SDL C Library Reference Manual 97

SDL Header Files
sdl.h, Continued

#define M1280X1024X16 14 /* 1280h x 1024v x 15/16 bpp */
#define M1600X1200X15 15 /* 1600h x 1200v x 15/16 bpp */
#define M1600X1200X16 15 /* 1600h x 1200v x 15/16 bpp */
#define M640X480X24 16 /* 640h x 480v x 24 bpp */
#define M800X600X24 17 /* 800h x 600v x 24 bpp */
#define M1024X768X24 18 /* 1024h x 768v x 24 bpp */
#define M1152X900X24 19 /* 1152h x 900v x 24 bpp */
#define M1280X1024X24 20 /* 1280h x 1024v x 24 bpp */
#define M1600X1200X24 21 /* 1600h x 1200v x 24 bpp */
#define M640X480X32 22 /* 640h x 480v x 32 bpp */
#define M800X600X32 23 /* 800h x 600v x 32 bpp */
#define M1024X768X32 24 /* 1024h x 768v x 32 bpp */
#define M1152X900X32 25 /* 1152h x 900v x 32 bpp */
#define M1280X1024X32 26 /* 1280h x 1024v x 32 bpp */
#define M1600X1200X32 27 /* 1600h x 1200v x 32 bpp */
#define MTEXT 255 /* 80 column text mode */

/* Custom Video Modes */
#define M512X256X4 128 /* 512h x 256v x 4 bpp */
#define M512X256X8 129 /* 512h x 256v x 8 bpp */
#define M512X384X4 130 /* 512h x 384v x 4 bpp */
#define M512X384X8 131 /* 512h x 384v x 8 bpp */
#define M320X240X4 132 /* 320h x 240v x 4 bpp */
#define M752X582X8 133 /* 752h x 582v x 8 bpp */
#define M768X576X8 134 /* 768h x 576v x 8 bpp */
#define MSTANAG_AX8 (135|P_SYNC_ON_GREEN) /* 672h x 809v x 8 bpp */
#define MVISTAX8 (136|P_SYNC_ON_GREEN) /* 672h x 672v x 8 bpp */
#define MSTANAG_AX16 (137|P_SYNC_ON_GREEN) /* 672h x 809v x 16 bpp */
#define MVISTAX16 (138|P_SYNC_ON_GREEN) /* 672h x 672v x 16 bpp */
#define MSTANAG_AX32 (139|P_SYNC_ON_GREEN) /* 672h x 809v x 32 bpp */
#define MVISTAX32 (140|P_SYNC_ON_GREEN) /* 672h x 672v x 32 bpp */
#define M1024X768X8_XGA 141 /* 1024h x 768v x 8 bpp @ 60 Hz */
#define MSTANAG_BX8 (142|P_SYNC_ON_GREEN) /* 768h x 574v x 8 bpp */
#define MSTANAG_BX16 (143|P_SYNC_ON_GREEN) /* 768h x 574v x 16 bpp */
#define MSTANAG_BX32 (144|P_SYNC_ON_GREEN) /* 768h x 574v x 32 bpp */
#define MSTANAG_CX8 (145|P_SYNC_ON_GREEN) /* 640h x 484v x 8 bpp */
#define MSTANAG_CX16 (146|P_SYNC_ON_GREEN) /* 640h x 484v x 16 bpp */
#define MSTANAG_CX32 (147|P_SYNC_ON_GREEN) /* 640h x 484v x 32 bpp */

/* FLAT PANEL TYPES - not all panels are supported by all drivers */
#define P_NEC_NL6448AC33_18 0x0000
#define P_SHARP_640X480X18_TFT 0x0100
#define P_VT_LCD70X_640X480X18_TFT 0x0200
#define P_GENERIC_18BIT_TFT 0x0E00
#define P_GENERIC_24BIT_TFT 0x0F00
#define P_SYNC_ON_GREEN 0x1000
#define P_COMPOSITE_SYNC 0x2000
#define P_DVI 0x3000
#define P_SEC_DAC 0x08000 /* enable secondary DAC */
#define P_SEC_DAC_SOG 0x10000 /* SOG on secondary RGB DAC */
#define P_BLOCK_SYNC_ON_GREEN 0x20000 /* block mode SOG on main */
#define P_SEC_BLOCK_SOG 0x40000 /* block mode SOG on secondary */
#define P_LVDS1 0x80000 /* enable LVDS1 output */
#define P_LVDS2 0x100000 /* enable LVDS2 output */
#define P_NO_WFIFO 0x200000 /* do not use WFIFO with tvout */
/* SOG types for Duros */
#define P_SOG_XOR 0x001000
#define P_SOG_STANAG 0x020000
#define P_SOG_AND 0x021000
#define PANEL_MASK 0x00f00 /* allows for 256 flat panel types */

98 SDL C Library Reference Manual

SDL Header Files
sdl.h, Continued

/* DEVICE SPECIFIERS for setGraphicsDevice() */
/* these can be or'd together, except for the two TV modes */
#define CRT_DEVICE 0x01 /* default */
#define LCD_DEVICE 0x02
#define NTSC_TV_DEVICE 0x04
#define PAL_TV_DEVICE 0x08
#define VP2CRTDAC 0x10 /* VP engine feeds CRT DAC */
#define VP2DIGOUT 0x20 /* VP engine feeds flat panel output */
#define VP2LVDS2 0x40 /* VP engine feeds LVDS2 output */
#define NULL_DEVICE 0x80 /* keep previous output settings */

/* (GRAPHICS CHIP) CHIP/BOARD SELECT for setGraphicsDevice() */
/* one of these can be or'd with the device specifiers above */
 /* graphics chip number on a board */
#define GDEV_0 0x000000
#define GDEV_1 0x000100
#define GDEV_2 0x000200
#define GDEV_3 0x000300

/* board number in system */
#define GBRD_0 0x000000
#define GBRD_1 0x010000
#define GBRD_2 0x020000
#define GBRD_3 0x030000

/* DEVICE SPECIFIERS for setVideoDevice() and setVideoSource(dev, port) */
#define VDEV_HOST 0
#define VDEV_DECODER1 1
#define VDEV_DECODER2 2

/* (GRAPHICS CHIP) PORT SPECIFIERS for setVideoSource(dev, port) */
#define VPORT_VPORT 0 /* hardware video port */
#define VPORT_PCI 1 /* PCI bus */

/* input port(s) on video decoder chip */
#define VDEC_ANALOG 0 /* Standard analog input */
#define VDEC_DIGITAL 1 /* CCIR 656 digital video input */
#define VDEC_DVI 2 /* DVI digital video input */

/* output port(s) on video decoder chip */
#define VDEC_SPI 1 /* Streaming Pixel Interface (V-Port) */
#define VDEC_PCI 2 /* PCI bus */

/* (DECODER) VIDEO SOURCES for videoSelect() *
/* VIDEO SOURCES - for RG101 */
#define CVIDEO1 0 /* composite video 1 */
#define CVIDEO2 1 /* composite video 2 */
#define CVIDEO3 3 /* composite video 3 */
#define CVIDEO4 4 /* composite video 4 */
#define SVIDEO 2 /* S-video 1 */
#define GPIO_DIG 16 /* digital video on GPIO port */
#define RGBHV 17 /* analog RGBHsVs video */
#define TEST_PATN 64 /* internal test pattern (e.g. color bars) */
#define LOOPBACK 65 /* loopback from composite video output */

SDL C Library Reference Manual 99

SDL Header Files
sdl.h, Continued
/* (DECODER) SOURCE VIDEO MODES for initCapture() */
#define NTSC 0
#define PAL 1
#define CCIR_NTSC 2
#define CCIR_PAL 3
#define NTSC_2_1 4
#define PAL_2_1 5
#define CCIR_NTSC_2_1 6
#define CCIR_PAL_2_1 7
#define SECAM 8
#define CCIR_656 16 /* CCIR 656 digital video */
#define SMPTE_125 17 /* Modified SMPTE-125 digital video */
#define VGA_RGB 18 /* RGBHV input to AD9882 on Stratus */
#define VGA_MONO 19 /* monochrome RGB input to AD9882 on Stratus */
#define VGA_YC 19 /* old name */
#define VGA_RGB_SOG 20 /* RGB+SOG input to AD9882 on Stratus */
#define VGA_MONO_SOG 21 /* monochrome RGB+SOG input to AD9882 */
#define VGA_DVI 22 /* DVI input to AD9882 on Stratus */
#define STANAG_A 23 /* STANAG-A input to AD9882 */
#define STANAG_B 24 /* STANAG-B input to AD9882 */
#define STANAG_C 25 /* STANAG-C input to AD9882 */
#define SONY_DXC990 26 /* Sony DXC-990 camcorder RGB+SOG to AD9882 */
#define NUM_VIDMODES 9 /* number of Bt835 capture formats */

/* Custom source video modes (or'd into base source mode above) */
#define CCIR_PAL_CCD (0x01<<8) /* 752h x 582v PAL CCIR */

/* Video capture pixel formats */
#define VID_YUV422 0 /* default YCrCb 4:2:2 packed */
#define VID_RGB16 1 /* 5-6-5 RGB */
#define VID_RGB24 2 /* 8-8-8 RGB (packed) */
#define VID_RGB32 3 /* 8-8-8-8 RGB */
#define VID_Y8 4 /* 8-bit luminance only (for monochrome) */
#define VID_RGB8 5 /* 8-bit RGB (direct or indexed)

/* Video capture field selection */
#define CAPTURE_EVEN 1 /* capture/display odd fields */
#define CAPTURE_ODD 2 /* capture/display even fields */
#define CAPTURE_BOTH 3 /* capture/display both even and odd fields */

/* DMA source flags (support varies by board type) */
#define DMA_NONE 0
#define DMA_GDEV0_GRMEM 1 /* graphics device 0 - graphics memory */
#define DMA_GDEV0_VIMEM 2 /* graphics device 0 - video capture memory */
#define DMA_GDEV1_GRMEM 3 /* graphics device 1 - graphics memory */
#define DMA_GDEV1_VIMEM 4 /* graphics device 1 - video capture memory */
#define DMA_VDEC0 5 /* video decoder 0 */
#define DMA_VDEC1 6 /* video decoder 1 */
#define DMA_ADEC0 7 /* audio decoder 0 */
#define DMA_ADEC1 8 /* audio decoder 1 */
#define DMA_NSRCS 8 /* number of possible sources for DMA */

/* DMA transfer flags (support varies by board type) */
#define DMA_WAIT 0 /* polled wait for entire transfer */
#define DMA_NOWAIT 1 /* interrupt driven transfer */
#define DMA_CONTINUOUS 2 /* copy on each Vblank or ZV port interrupt */
#define DMA_INTERLACE 4 /* transfer even fields only */
#define DMA_GRAPHICS_MEM 8 /* copy graphics mem instead of video mem */

100 SDL C Library Reference Manual

SDL Header Files
sdl.h, Continued

/* syncControl() flags */
#define SYNC_NORMAL 0
#define SYNC_LOW 1
#define SYNC_HIGH 2
#define SYNC_OFF 3

/* BOARD TYPES - for drivers that support multiple board types */
#define BOARD_NONE 0
#define BOARD_RG100 1
#define BOARD_RG101 2
#define BOARD_RG103 3
#define BOARD_RG750 4
#define BOARD_VFX 5
#define BOARD_VCQM 6
#define BOARD_VFG 7
#define BOARD_VGL 8
#define BOARD_VQP 9
#define BOARD_VFR 10
#define BOARD_ARGUS 11 /* 2x Borealis 3 + 2x Bt878a */
#define BOARD_GEMINI 12 /* 2x Borealis 3 */
#define BOARD_STRATUS 13 /* SM731 + Bt835 + AD9882 */
#define BOARD_TROPOS 14 /* SM731 */
#define BOARD_VISTA 15 /* SM731 (custom mod Tropos) */
#define BOARD_DUROS 16 /* SM731 + CY22150 */
#define BOARD_GARNET 17 /* SM731 + CY22150 + Bt835 + AD9882 */
#define BOARD_ARGUSR2 18 /* 2x Borealis 3 + 2x cx23880 + usb audio */
/* board families */
#define BOARD_FAM_RG10x 129 /* RG-100, RG-101 */
#define BOARD_FAM_VCQM 130 /* VCQ, VFG, VQP */
#define BOARD_FAM_VFX 131 /* VFX, VFR */
#define BOARD_FAM_GEMINI 132 /* GEMINI, ARGUS, ARGUSV2 */
#define BOARD_FAM_STRATUS 133 /* STRATUS, TROPOS, COLOS, DUROS */

SDL C Library Reference Manual 101

SDL Header Files
sdl.h, Continued

typedef int Bool;
typedef void (*PIXEL_OUTPUT)(int x,int y);

/* x, y designate the origin, usually in the upper left hand */
/* corner. */
typedef struct tagPoint
{
 short x;
 short y;
}sPoint,*spPoint;

typedef struct tagRectangle
{
 short x,
 y,
 width, /* relative to x,y */
 height; /* relative to x,y */
}sRectangle,*spRectangle;

/* PATTERNS: patterns are 16 columns by 16 rows.
* The width of a pattern can be from [1..16] but must always be filled
* out as unsigned shorts with bit 0 being x0 in the pattern.
*/
typedef struct tagPattern
{
 unsigned int width,
 height;
 unsigned short *data; /* pointer to the pattern data */
}sPattern,*spPattern;

/* NEEDED FOR STRUCT DEFINITION BELOW */
typedef struct tagFontInfo
{
 short width, /* width of character in pixels */
 ascent, /* number of pixels above baseline */
 descent; /* number of pixels below baseline */
}sFontInfo, *spFontInfo;

/* FONT INFO STRUCTURE */
typedef struct tagFontStruct
{
 char fontName[12]; /* name of font */
 unsigned long fontId; /* unique font identifier */
 sFontInfo minbounds, /* smallest char dimensions */
 maxbounds; /* largest char dimensions */
 unsigned short fontAscent; /* overall font ascent */
 unsigned short fontDescent; /* overall font descent */
}sFontStruct, *spFontStruct;

102 SDL C Library Reference Manual

SDL Header Files
sdl.h, Continued

/*
 * Base structures used by the Raster Graphics Font format (rgf)
 * from X11R6.
 */

/* $XConsortium: fontstruct.h,v 1.16 94/04/17 20:11:08 gildea Exp $ */
/***
Copyright 1987 by Digital Equipment Corporation, Maynard, Massachusetts.

 All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Digital not be
used in advertising or publicity pertaining to distribution of the
software without specific, written prior permission.

DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

**/

typedef struct taggeCharInfo
{
 short leftSideBearing,
 rightSideBearing,
 characterWidth,
 ascent,
 descent,
 attributes;
}sgeCharInfo, *spgeCharInfo;

SDL C Library Reference Manual 103

SDL Header Files
sdl.h, Continued

typedef struct tagRGFontInfo
{
 unsigned short firstCol; /* range of glyphs for this font */
 unsigned short lastCol;
 unsigned short firstRow;
 unsigned short lastRow;
 unsigned short defaultCh; /* default character index */
 char noOverlap; /* no combina of glyphs overlap */
 char terminalFont; /* Character cell font */
 char constantMetrics; /* all metrics are the same */
 char constantWidth; /* all char widths are the same */
 char allExist; /* no missing chars in range */
 char drawDirection; /* left-to-right/right-to-left */
 short maxOverlap; /* maximum overlap amount */
 short pad; /* unused */
 sgeCharInfo minbounds; /* glyph metrics minimums */
 sgeCharInfo maxbounds; /* glyph metrics maximums */
 short fontAscent; /* font ascent amount */
 short fontDescent; /* font descent amount */

}sRGFontInfo,*spRGFontInfo;

typedef struct tagRGFont
{
 int refcnt;
 int type; /* 0=scalable, 2=bitmap */
 char name[12]; /* font name */
 sRGFontInfo info;
 unsigned long format;
 /* format is composed of (starting at the LSB [see macros above]):
 glyphpad: 2 glyph pad: 1, 2, 4 or 8
 byteorder:1 byte order: LSBFirst/MSBFirst
 bitorder: 1 bit order: LSBFirst/MSBFirst
 scanunit: 2 glyph scan unit: 1, 2 or 4
 encodingunit:2 encoding unit: 1, 2 or 4
 reserved:25
 */
 void *fontPrivate; /* private to font */
 /* e.g. offset to sRGBitmapFont */
}sRGFont,*spRGFont;

typedef struct tagDmaInfo
{
 unsigned int *startAddr; /* start of data to transfer (in PCI space) */
 unsigned int *dmaStart; /* start of DMA buffer (in CPU space) */
 unsigned int *dmaPciStart; /* start of DMA buffer (in PCI space) */
 int totalSize; /* total size of transfer */
 int remainSize; /* remaining transfer size */
 int dmaFlags; /* flags for DMA operations */
 int unused01;
} sDmaInfo, *spDmaInfo;

104 SDL C Library Reference Manual

SDL Header Files
sdl.h, Continued

/* Function prototypes */

#ifdef __cplusplus
};
#endif
#endif

SDL C Library Reference Manual 105

SDL Header Files
extern.h

/* ===== $Id: extern.h,v 1.33 2004/02/28 20:34:38 billr Exp $ ===== */
/**/
/* STANDARD DRAWING LIBRARY */
/* */
/* Rastergraf, Inc. */
/* Used under license from CURTISS-WRIGHT CONTROLS, INC. */
/* COPYRIGHT (C) 2001 CURTISS-WRIGHT CONTROLS, INC. */
/* */
/* This software is licensed software subject to the terms of the */
/* Source Code License Agreement. Refer to the file LICENSE for details. */
/**/
/* FILE NAME : extern.h */
/* DATE CREATED: 7/29/95 */
/* PROJECT NAME: SDL */
/* DESCRIPTION : header file for SDL global variables */
/* AUTHOR : PK */
/* REVISIONS : 7/12/97 br – add _sdl_fd for Lynx */
/* NOTES : */
/* FUNCTIONS : */
/**/

#ifndef EXTERN_H
define EXTERN_H

extern int _arcMode;
extern int _fillStyle;
extern int _fillRule;
extern int _pproc;

extern unsigned char *_dashList;
extern int _dashStyle;
extern int _dashOffset;
extern int _numDash;

extern int _currentFont;
extern int _numFonts;
extern int _transparency;

extern sPoint _origin;
extern sPoint _patrnOrigin;
extern sRectangle _clipRect;
extern sRectangle _realClipRect;
extern spPattern _currentPattern;

extern unsigned long _fgColor;
extern unsigned long _bgColor;

extern int _maxX;
extern int _maxY;
extern int _bitsPerPixel;
extern long _screenPitch;
extern unsigned char *_graphicsBase;
extern int _videoMode;
extern int _grayscale;
extern unsigned char *_paletteTable;

106 SDL C Library Reference Manual

SDL Header Files
extern.h, Continued

extern unsigned char *_videoPages[];
extern int _numVideoPages;
extern int _displayPage;
extern int _writePage;
extern int _isOverlay;
extern int _numDevices;
extern int _currentDevice;
extern int _maxVideoMemory;
extern int _useKeyboard;
extern int _useMouse;
extern int _mouseType;
#ifdef __Lynx__
extern int _sdl_fd;
#endif
extern int _pciMemBase;
extern int _pciIoBase;
extern int _pciConfigAddr;
extern int _pciConfigData;
extern int _pciPciIoOffset;
extern int _pciIsaIoOffset;
extern int _pciPciMemOffset;
extern int _pciSwap;
extern int _pciChannel;
#if defined(_solaris_) || defined(__Lynx__)
extern char * _devName;
#endif
extern int _intNumber;
extern int _ioBase;
extern int _pciBus;
extern int _pciDev;
extern int _pciBus2;
extern int _forcePciConfig;
extern int _boardType;
extern int _virtualWidth;
extern int _virtualHeight;
extern int _numBoards;
extern int _currentBoard;
extern int _numVideoDevs;
extern int _videoInPort;
extern int _videoInDev;
extern int _cxOffset;
extern int _cyOffset;

extern void (*fatLineFunc)(int x1, int y1, int x2, int y2);
extern void (*fatDashLineFunc)(spPoint pt1, spPoint pt2,
 int tindex, int toffset, RGBool swapped);
extern int (*sdl_numPciBussesFunc)(void);
extern int (*sdl_pciConfigInLongFunc)(int busNo, int deviceNo,
 int funcNo, int address, unsigned int *pData);
extern int (*sdl_pciConfigOutLongFunc)(int busNo, int deviceNo,
 int funcNo, int address, unsigned int data);

#endif

SDL C Library Reference Manual 107

SDL Header Files
sdltimer.h

/* ===== $Id: sdltimer.h,v 1.17 2003/08/30 23:53:08 billr Exp $ ===== */
/**/
/* STANDARD DRAWING LIBRARY */
/* */
/* Rastergraf, Inc. */
/* Used under license from CURTISS-WRIGHT CONTROLS, INC. */
/* COPYRIGHT (C) 2001 CURTISS-WRIGHT CONTROLS, INC. */
/* */
/* This software is licensed software subject to the terms of the */
/* Source Code License Agreement. Refer to the file LICENSE for details. */
/**/
/* FILE NAME : sdltimer.h */
/* DATE CREATED: 8/26/95 */
/* PROJECT NAME: SGL */
/* DESCRIPTION : defines for time delays */
/* AUTHOR : BR */
/* FUNCTIONS : */
/**/
#ifndef SDLTIMER_H
define SDLTIMER_H

#ifdef __cplusplus
extern "C" {
#endif
/*
 * This file defines macros for delays in increments of clock ticks
 * (typically 1/60th of a second) and in increments of seconds.
 * One and only one of these OS types must be defined in the Makefile
 * or make.include file.
 */
#ifdef VXWORKS
#include <taskLib.h>
#define TICK_DELAY(_n) taskDelay(_n)
#define SLEEP(_n) taskDelay(60*(_n))
#endif

#ifdef OS9_OS
#define TICK_DELAY(_n) tsleep(_n)
#define SLEEP(_n) sleep(_n)
#endif

#ifdef _OS9000
/* close-enough conversion from 1/60 second to 1/256 second */
#define TICK_DELAY(_n) {int t; unsigned long int s;\
 t = ((_n)*5)|0x80000000;\
 _os_sleep(&t, &s);\
 }
#define SLEEP(_n) {int t; unsigned long int s;\
 t = ((_n)*256)|0x80000000;\
 _os_sleep(&t, &s);\
 }
#endif

108 SDL C Library Reference Manual

SDL Header Files
sdltimer.h, Continued

#ifdef VMEX
#include <unistd.h>
#include "vmex/vmexflgs.h"
#define TICK_DELAY(_n) tm_wkafter(_n)
#define SLEEP(_n) sleep(_n)
#endif

#ifdef AIX
#include <X11/Xlib.h>
#include <unistd.h>
#include <sys/select.h>
#define TICK_DELAY(_n) {struct timeval delay;\
 extern Display *dpy;\
 XSync(dpy,0);\
 delay.tv_sec = (_n)/1000000;\
 delay.tv_usec = (((_n)*1000000)/60)%1000000;\
 select(0, 0, 0, 0, &delay);\
 }
#define SLEEP(_n) {extern Display *dpy;\
 XSync(dpy,0);\
 sleep(_n);\
 }
#endif

#ifdef UNIX /* generic X11/Unix */
#ifdef SVGA
#include <unistd.h>
#include <sys/time.h>
#define TICK_DELAY(_n) {struct timeval delay;\
 delay.tv_sec = (_n)/1000000;\
 delay.tv_usec = (((_n)*1000000)/60)%1000000;\
 select(0, (fd_set*)0, (fd_set*)0, (fd_set*)0, &delay);\
 }
#define SLEEP(_n) sleep(_n)
else
#include <unistd.h>
#include <sys/time.h>
#define TICK_DELAY(_n) {struct timeval delay;\
 sync__peritek_com();\
 delay.tv_sec = (_n)/1000000;\
 delay.tv_usec = (((_n)*1000000)/60)%1000000;\
 select(0, (fd_set*)0, (fd_set*)0, (fd_set*)0, &delay);\
 }
#define SLEEP(_n) {sync__peritek_com();\
 sleep(_n);\
 }
endif
#endif

SDL C Library Reference Manual 109

SDL Header Files
sdltimer.h, Continued

#ifdef __Lynx__
#include <unistd.h>
#include <sys/time.h>
#define TICK_DELAY(_n) {struct timeval delay;\
 delay.tv_sec = (_n)/1000000;\
 delay.tv_usec = (((_n)*1000000)/60)%1000000;\
 select(0, (fd_set*)0, (fd_set*)0, (fd_set*)0, &delay);\
 }
#define SLEEP(_n) sleep(_n)
#endif

#ifdef __cplusplus
};
#endif

#endif

110 SDL C Library Reference Manual

SDL Header Files
colors.h

/* ===== $Id: colors.h,v 1.12 1997/08/02 23:25:15 billr Exp $ ===== */
/**/
/* STANDARD DRAWING LIBRARY */
/* */
/* Rastergraf, Inc. */
/* Used under license from CURTISS-WRIGHT CONTROLS, INC. */
/* COPYRIGHT (C) 2001 CURTISS-WRIGHT CONTROLS, INC. */
/* */
/* This software is licensed software subject to the terms of the */
/* Source Code License Agreement. Refer to the file LICENSE for details. */
/**/
/* FILE NAME :colors.h */
/* DATE CREATED:6/30/95 */
/* PROJECT NAME:SDL */
/* DESCRIPTION :Color names for SDL colors for palette RGI_1 */
/* AUTHOR :Herbie */
/* REVISIONS 12/25/95 br – add RG-752 color mapping */
/**/
/* This file defines color names and their corresponding index values */
/* allowing SDL colors to be referenced by name instead of by number. */

#ifndef COLORS_H
define COLORS_H

#ifdef RG752
/*
 * The RG-752 is a direct color board (i.e no lookup palette) with
 * 3 bits of color information for each gun, mapped into a 16-bit
 * word: o000rrr0ggg0bbb0. The leading 'o' bit, when set, makes the
 * color opaque when used in the overlay plane.
 * The defines below are an attempt to map the palettized colors
 * used in 8-bit systems into the RG-752 color space. This provides
 * a common color name space for demo programs designed to run on
 * different hardware/boards.
 */
/* Color Name Color Value */
/* CGA Colors */
#define XBrown 0x8026
#define Black 0x8000 /* 0 */
#define Blue 0x8006 /* 1 */
#define Green 0x8060 /* 2 */
#define Cyan 0x8066 /* 3 */
#define Red 0x8600 /* 4 */
#define Magenta 0x8606 /* 5 */
#define Brown 0x8660 /* 6 */
#define LightGray 0x8888 /* 7 */
#define DarkGray 0x8444 /* 8 */
#define LightBlue 0x800e /* 9 */
#define LightGreen 0x80e0 /* 10 */
#define LightCyan 0x80ee /* 11 */
#define LightRed 0x8e00 /* 12 */
#define LightMagenta 0x8e0e /* 13 */
#define Yellow 0x8ee0 /* 14 */
#define White 0x8eee /* 15 */

SDL C Library Reference Manual 111

SDL Header Files
colors.h, Continued

/* Color Name Color Value */
/* 8 Shades of Gray */
#define Gray0 0x8000 /* 16 */ /* Darkest Shade */
#define Gray1 0x8000 /* 17 */
#define Gray2 0x8000 /* 18 */
#define Gray3 0x8222 /* 19 */
#define Gray4 0x8222 /* 20 */
#define Gray5 0x8222 /* 21 */
#define Gray6 0x8444 /* 22 */
#define Gray7 0x8444 /* 23 */
#define Gray8 0x8666 /* 24 */
#define Gray9 0x8666 /* 25 */
#define Gray10 0x8666 /* 26 */
#define Gray11 0x8888 /* 27 */
#define Gray12 0x8888 /* 28 */
#define Gray13 0x8aaa /* 29 */
#define Gray14 0x8ccc /* 30 */
#define Gray15 0x8eee /* 31 */ /* Lightest Shade */
/* Eight shades of various colors */
#define DarkRed0 0x8600 /* 32 */ /* Darkest Shade */
#define DarkRed1 0x8600 /* 33 */
#define DarkRed2 0x8600 /* 34 */
#define DarkRed3 0x8600 /* 35 */
#define DarkRed4 0x8600 /* 36 */
#define DarkRed5 0x8800 /* 37 */
#define DarkRed6 0x8800 /* 38 */
#define DarkRed7 0x8800 /* 39 */ /* Lightest Shade */

#define DarkBrown0 0x8400 /* 40 */ /* Darkest Shade*/
#define DarkBrown1 0x8420 /* 41 */
#define DarkBrown2 0x8620 /* 42 */
#define DarkBrown3 0x8620 /* 43 */
#define DarkBrown4 0x8620 /* 44 */
#define DarkBrown5 0x8620 /* 45 */
#define DarkBrown6 0x8620 /* 46 */
#define DarkBrown7 0x8820 /* 47 */ /* Lightest Shade */

#define Red0 0x8800 /* 48 */ /* Darkest Shade */
#define Red1 0x8a00 /* 49 */
#define Red2 0x8a00 /* 50 */
#define Red3 0x8c00 /* 51 */
#define Red4 0x8c00 /* 52 */
#define Red5 0x8c00 /* 53 */
#define Red6 0x8c00 /* 54 */
#define Red7 0x8e00 /* 55 */ /* Lightest Shade */

#define Brown0 0x8620 /* 56 */ /* Darkest Shade*/
#define Brown1 0x8820 /* 57 */
#define Brown2 0x8820 /* 58 */
#define Brown3 0x8840 /* 59 */
#define Brown4 0x8840 /* 60 */
#define Brown5 0x8a40 /* 61 */
#define Brown6 0x8a40 /* 62 */
#define Brown7 0x8c40 /* 63 */ /* Lightest Shade */

112 SDL C Library Reference Manual

SDL Header Files
colors.h, Continued

/* Color Name Color Value */
#define RedBrown0 0x8a20 /* 64 */ /* Darkest Shade */
#define RedBrown1 0x8a20 /* 65 */
#define RedBrown2 0x8a20 /* 66 */
#define RedBrown3 0x8a20 /* 67 */
#define RedBrown4 0x8a40 /* 68 */
#define RedBrown5 0x8a40 /* 69 */
#define RedBrown6 0x8a40 /* 70 */
#define RedBrown7 0x8a42 /* 71 */ /* Lightest Shade */

#define LightBrown0 0x8a60 /* 72 */ /* Darkest Shade */
#define LightBrown1 0x8a60 /* 73 */
#define LightBrown2 0x8a60 /* 74 */
#define LightBrown3 0x8a60 /* 75 */
#define LightBrown4 0x8c60 /* 76 */
#define LightBrown5 0x8c80 /* 77 */
#define LightBrown6 0x8c80 /* 78 */
#define LightBrown7 0x8c80 /* 79 */ /* Lightest Shade */

#define Orange0 0x8e00 /* 80 */ /* Darkest Shade*/
#define Orange1 0x8e20 /* 81 */
#define Orange2 0x8e20 /* 82 */
#define Orange3 0x8e40 /* 83 */
#define Orange4 0x8e40 /* 84 */
#define Orange5 0x8e40 /* 85 */
#define Orange6 0x8e60 /* 86 */
#define Orange7 0x8e60 /* 87 */ /* Lightest Shade */

#define Tan0 0x8e80 /* 88 */ /* Darkest Shade */
#define Tan1 0x8e80 /* 89 */
#define Tan2 0x8e80 /* 90 */
#define Tan3 0x8ea0 /* 91 */
#define Tan4 0x8ea0 /* 92 */
#define Tan5 0x8ea0 /* 93 */
#define Tan6 0x8ea0 /* 94 */
#define Tan7 0x8ec2 /* 95 */ /* Lightest Shade */

#define LightOrange0 0x8c42 /* 96 */ /* Darkest Shade*/
#define LightOrange1 0x8c42 /* 97 */
#define LightOrange2 0x8c42 /* 98 */
#define LightOrange3 0x8c42 /* 99 */
#define LightOrange4 0x8c42 /* 100 */
#define LightOrange5 0x8c40 /* 101 */
#define LightOrange6 0x8c40 /* 102 */
#define LightOrange7 0x8c40 /* 103 */ /* Lightest Shade */

#define Yellow0 0x8ec2 /* 104 */ /* Darkest Shade */
#define Yellow1 0x8ec2 /* 105 */
#define Yellow2 0x8ec2 /* 106 */
#define Yellow3 0x8ec0 /* 107 */
#define Yellow4 0x8ee0 /* 108 */
#define Yellow5 0x8ee0 /* 109 */
#define Yellow6 0x8ee0 /* 110 */
#define Yellow7 0x8ee0 /* 111 */ /* Lightest Shade */

SDL C Library Reference Manual 113

SDL Header Files
colors.h, Continued

/* Color Name Color Value */
#define Pink0 0x8e00 /* 112 */ /* Darkest Shade */
#define Pink1 0x8e22 /* 113 */
#define Pink2 0x8e22 /* 114 */
#define Pink3 0x8e42 /* 115 */
#define Pink4 0x8e42 /* 116 */
#define Pink5 0x8e44 /* 117 */
#define Pink6 0x8e64 /* 118 */
#define Pink7 0x8e64 /* 119 */ /* Lightest Shade */

#define YellowGreen0 0x8ae0 /* 120 */ /* Darkest Shade*/
#define YellowGreen1 0x8ae0 /* 121 */
#define YellowGreen2 0x8ae2 /* 122 */
#define YellowGreen3 0x8ae2 /* 123 */
#define YellowGreen4 0x8ae4 /* 124 */
#define YellowGreen5 0x8ae6 /* 125 */
#define YellowGreen6 0x8ae6 /* 126 */
#define YellowGreen7 0x8ae8 /* 127 */ /* Lightest Shade */

#define Raspberry0 0x8a02 /* 128 */ /* Darkest Shade */
#define Raspberry1 0x8a04 /* 129 */
#define Raspberry2 0x8a04 /* 130 */
#define Raspberry3 0x8c04 /* 131 */
#define Raspberry4 0x8c06 /* 132 */
#define Raspberry5 0x8c06 /* 133 */
#define Raspberry6 0x8e06 /* 134 */
#define Raspberry7 0x8e06 /* 135 */ /* Lightest Shade */

#define LightGreen0 0x88e0 /* 136 */ /* Darkest Shade*/
#define LightGreen1 0x88e0 /* 137 */
#define LightGreen2 0x88e2 /* 138 */
#define LightGreen3 0x88e2 /* 139 */
#define LightGreen4 0x88e4 /* 140 */
#define LightGreen5 0x88e6 /* 141 */
#define LightGreen6 0x88e8 /* 142 */
#define LightGreen7 0x88e6 /* 143 */ /* Lightest Shade */

#define Purple0 0x8e0a /* 144 */ /* Darkest Shade */
#define Purple1 0x8e0a /* 145 */
#define Purple2 0x8e0c /* 146 */
#define Purple3 0x8e2c /* 147 */
#define Purple4 0x8e2c /* 148 */
#define Purple5 0x8e2c /* 149 */
#define Purple6 0x8e4c /* 150 */
#define Purple7 0x8e6c /* 151 */ /* Lightest Shade */

#define Green0 0x80c0 /* 152 */ /* Darkest Shade */
#define Green1 0x80c0 /* 153 */
#define Green2 0x82c2 /* 154 */
#define Green3 0x82c2 /* 155 */
#define Green4 0x84c4 /* 156 */
#define Green5 0x86c6 /* 157 */
#define Green6 0x86c6 /* 158 */
#define Green7 0x88c8 /* 159 */ /* Lightest Shade */

114 SDL C Library Reference Manual

SDL Header Files
colors.h, Continued

/* Color Name Color Value */
#define DarkPurple0 0x8004 /* 160 */ /* Darkest Shade*/
#define DarkPurple1 0x8006 /* 161 */
#define DarkPurple2 0x8208 /* 162 */
#define DarkPurple3 0x8408 /* 163 */
#define DarkPurple4 0x840a /* 164 */
#define DarkPurple5 0x860a /* 165 */
#define DarkPurple6 0x860a /* 166 */
#define DarkPurple7 0x880c /* 167 */ /* Lightest Shade */

#define DarkGreen0 0x8060 /* 168 */ /* Darkest Shade */
#define DarkGreen1 0x8080 /* 169 */
#define DarkGreen2 0x8080 /* 170 */
#define DarkGreen3 0x80a0 /* 171 */
#define DarkGreen4 0x80a0 /* 172 */
#define DarkGreen5 0x80c0 /* 173 */
#define DarkGreen6 0x82c0 /* 174 */
#define DarkGreen7 0x84c0 /* 175 */ /* Lightest Shade */

#define Slate0 0x8662 /* 176 */ /* Darkest Shade*/
#define Slate1 0x8664 /* 177 */
#define Slate2 0x8666 /* 178 */
#define Slate3 0x8666 /* 179 */
#define Slate4 0x8668 /* 180 */
#define Slate5 0x866a /* 181 */
#define Slate6 0x866a /* 182 */
#define Slate7 0x866c /* 183 */ /* Lightest Shade */

#define ForestGreen0 0x8040 /* 184 */ /* Darkest Shade */
#define ForestGreen1 0x8040 /* 185 */
#define ForestGreen2 0x8040 /* 186 */
#define ForestGreen3 0x8040 /* 187 */
#define ForestGreen4 0x8240 /* 188 */
#define ForestGreen5 0x8240 /* 189 */
#define ForestGreen6 0x8240 /* 190 */
#define ForestGreen7 0x8442 /* 191 */ /* Lightest Shade */

#define Blue0 0x800e /* 192 */ /* Darkest Shade */
#define Blue1 0x800e /* 193 */
#define Blue2 0x802e /* 194 */
#define Blue3 0x802e /* 195 */
#define Blue4 0x804e /* 196 */
#define Blue5 0x824e /* 197 */
#define Blue6 0x824e /* 198 */
#define Blue7 0x844e /* 199 */ /* Lightest Shade */

#define Mustard0 0x8660 /* 200 */ /* Darkest Shade*/
#define Mustard1 0x8660 /* 201 */
#define Mustard2 0x8680 /* 202 */
#define Mustard3 0x8880 /* 203 */
#define Mustard4 0x88a0 /* 204 */
#define Mustard5 0x88a0 /* 205 */
#define Mustard6 0x88a0 /* 206 */
#define Mustard7 0x8ac0 /* 207 */ /* Lightest Shade */

SDL C Library Reference Manual 115

SDL Header Files
colors.h, Continued

/* Color Name Color Value */
#define LightBlue0 0x806e /* 208 */ /* Darkest Shade */
#define LightBlue1 0x808e /* 209 */
#define LightBlue2 0x80ae /* 210 */
#define LightBlue3 0x80ae /* 211 */
#define LightBlue4 0x82ce /* 212 */
#define LightBlue5 0x84ee /* 213 */
#define LightBlue6 0x86ee /* 214 */
#define LightBlue7 0x8aee /* 215 */ /* Lightest Shade */

#define DesertGreen0 0x8682 /* 216 */ /* Darkest Shade*/
#define DesertGreen1 0x8882 /* 217 */
#define DesertGreen2 0x8882 /* 218 */
#define DesertGreen3 0x8882 /* 219 */
#define DesertGreen4 0x8882 /* 220 */
#define DesertGreen5 0x88a2 /* 221 */
#define DesertGreen6 0x88a4 /* 222 */
#define DesertGreen7 0x8aa4 /* 223 */ /* Lightest Shade */

#define Turquoise0 0x80a8 /* 224 */ /* Darkest Shade */
#define Turquoise1 0x80a8 /* 225 */
#define Turquoise2 0x82c8 /* 226 */
#define Turquoise3 0x82e8 /* 227 */
#define Turquoise4 0x84e8 /* 228 */
#define Turquoise5 0x86e8 /* 229 */
#define Turquoise6 0x86e8 /* 230 */
#define Turquoise7 0x88e8 /* 231 */ /* Lightest Shade */

#define DarkTurquoise0 0x8042 /* 232 */ /* Darkest Shade */
#define DarkTurquoise1 0x8062 /* 233 */
#define DarkTurquoise2 0x8062 /* 234 */
#define DarkTurquoise3 0x8082 /* 235 */
#define DarkTurquoise4 0x80a2 /* 236 */
#define DarkTurquoise5 0x80a2 /* 237 */
#define DarkTurquoise6 0x80c2 /* 238 */
#define DarkTurquoise7 0x80e2 /* 239 */ /* Lightest Shade */

#else

116 SDL C Library Reference Manual

SDL Header Files
colors.h, Continued

/* Color Name Index Value */

/* CGA Colors */
#define Black 0
#define Blue 1
#define Green 2
#define Cyan 3
#define Red 4
#define Magenta 5
#define Brown 6
#define Gray 7
#define DarkGray 8
#define LightBlue 9
#define LightGreen 10
#define LightCyan 11
#define LightRed 12
#define BrightMagenta 13
#define Yellow 14
#define White 15

/*Shades of Gray */
#define Gray0 16 /* Darkest Shade */
#define Gray1 17
#define Gray2 18
#define Gray3 19
#define Gray4 20
#define Gray5 21
#define Gray6 22
#define Gray7 23
#define Gray8 24
#define Gray9 25
#define Gray10 26
#define Gray11 27
#define Gray12 28
#define Gray13 29
#define Gray14 30
#define Gray15 31 /* Lightest Shade */

SDL C Library Reference Manual 117

SDL Header Files
colors.h, Continued

/* Color Name Index Value */

#define DarkRed0 32 /* Darkest Shade */
#define DarkRed1 33
#define DarkRed2 34
#define DarkRed3 35
#define DarkRed4 36
#define DarkRed5 37
#define DarkRed6 38
#define DarkRed7 39 /* Lightest Shade */

#define DarkBrown0 40 /* Darkest Shade */
#define DarkBrown1 41
#define DarkBrown2 42
#define DarkBrown3 43
#define DarkBrown4 44
#define DarkBrown5 45
#define DarkBrown6 46
#define DarkBrown7 47 /* Lightest Shade */

#define Red0 48 /* Darkest Shade */
#define Red1 49
#define Red2 50
#define Red3 51
#define Red4 52
#define Red5 53
#define Red6 54
#define Red7 55 /* Lightest Shade */

#define Brown0 56 /* Darkest Shade */
#define Brown1 57
#define Brown2 58
#define Brown3 59
#define Brown4 60
#define Brown5 61
#define Brown6 62
#define Brown7 63 /* Lightest Shade */

#define RedBrown0 64 /* Darkest Shade */
#define RedBrown1 65
#define RedBrown2 66
#define RedBrown3 67
#define RedBrown4 68
#define RedBrown5 69
#define RedBrown6 70
#define RedBrown7 71 /* Lightest Shade */

118 SDL C Library Reference Manual

SDL Header Files
colors.h, Continued

/* Color Name Index Value */

#define LightBrown0 72 /* Darkest Shade */
#define LightBrown1 73
#define LightBrown2 74
#define LightBrown3 75
#define LightBrown4 76
#define LightBrown5 77
#define LightBrown6 78
#define LightBrown7 79 /* Lightest Shade */

#define Orange0 80 /* Darkest Shade */
#define Orange1 81
#define Orange2 82
#define Orange3 83
#define Orange4 84
#define Orange5 85
#define Orange6 86
#define Orange7 87 /* Lightest Shade */

#define Tan0 88 /* Darkest Shade */
#define Tan1 89
#define Tan2 90
#define Tan3 91
#define Tan4 92
#define Tan5 93
#define Tan6 94
#define Tan7 95 /* Lightest Shade */

#define LightOrange0 96 /* Darkest Shade */
#define LightOrange1 97
#define LightOrange2 98
#define LightOrange3 99
#define LightOrange4 100
#define LightOrange5 101
#define LightOrange6 102
#define LightOrange7 103 /* Lightest Shade */

#define Yellow0 104 /* Darkest Shade */
#define Yellow1 105
#define Yellow2 106
#define Yellow3 107
#define Yellow4 108
#define Yellow5 109
#define Yellow6 110
#define Yellow7 111 /* Lightest Shade */

SDL C Library Reference Manual 119

SDL Header Files
colors.h, Continued

/* Color Name Index Value */

#define Pink0 112 /* Darkest Shade */
#define Pink1 113
#define Pink2 114
#define Pink3 115
#define Pink4 116
#define Pink5 117
#define Pink6 118
#define Pink7 119 /* Lightest Shade */

#define YellowGreen0 120 /* Darkest Shade */
#define YellowGreen1 121
#define YellowGreen2 122
#define YellowGreen3 123
#define YellowGreen4 124
#define YellowGreen5 125
#define YellowGreen6 126
#define YellowGreen7 127 /* Lightest Shade */

#define Raspberry0 128 /* Darkest Shade */
#define Raspberry1 129
#define Raspberry2 130
#define Raspberry3 131
#define Raspberry4 132
#define Raspberry5 133
#define Raspberry6 134
#define Raspberry7 135 /* Lightest Shade */

#define LightGreen0 136 /* Darkest Shade */
#define LightGreen1 137
#define LightGreen2 138
#define LightGreen3 139
#define LightGreen4 140
#define LightGreen5 141
#define LightGreen6 142
#define LightGreen7 143 /* Lightest Shade */

#define Purple0 144 /* Darkest Shade */
#define Purple1 145
#define Purple2 146
#define Purple3 147
#define Purple4 148
#define Purple5 149
#define Purple6 150
#define Purple7 151 /* Lightest Shade */

120 SDL C Library Reference Manual

SDL Header Files
colors.h, Continued

/* Color Name Index Value */

#define Green0 152 /* Darkest Shade */
#define Green1 153
#define Green2 154
#define Green3 155
#define Green4 156
#define Green5 157
#define Green6 158
#define Green7 159 /* Lightest Shade */

#define DarkPurple0 160 /* Darkest Shade */
#define DarkPurple1 161
#define DarkPurple2 162
#define DarkPurple3 163
#define DarkPurple4 164
#define DarkPurple5 165
#define DarkPurple6 166
#define DarkPurple7 167 /* Lightest Shade */

#define DarkGreen0 168 /* Darkest Shade */
#define DarkGreen1 169
#define DarkGreen2 170
#define DarkGreen3 171
#define DarkGreen4 172
#define DarkGreen5 173
#define DarkGreen6 174
#define DarkGreen7 175 /* Lightest Shade */

#define Slate0 176 /* Darkest Shade */
#define Slate1 177
#define Slate2 178
#define Slate3 179
#define Slate4 180
#define Slate5 181
#define Slate6 182
#define Slate7 183 /* Lightest Shade */

#define ForestGreen0 184 /* Darkest Shade */
#define ForestGreen1 185
#define ForestGreen2 186
#define ForestGreen3 187
#define ForestGreen4 188
#define ForestGreen5 189
#define ForestGreen6 190
#define ForestGreen7 191 /* Lightest Shade */

SDL C Library Reference Manual 121

SDL Header Files
colors.h, Continued

/* Color Name Index Value */

#define Blue0 192 /* Darkest Shade */
#define Blue1 193
#define Blue2 194
#define Blue3 195
#define Blue4 196
#define Blue5 197
#define Blue6 198
#define Blue7 199 /* Lightest Shade */

#define Mustard0 200 /* Darkest Shade */
#define Mustard1 201
#define Mustard2 202
#define Mustard3 203
#define Mustard4 204
#define Mustard5 205
#define Mustard6 206
#define Mustard7 207 /* Lightest Shade */

#define LightBlue0 208 /* Darkest Shade */
#define LightBlue1 209
#define LightBlue2 210
#define LightBlue3 211
#define LightBlue4 212
#define LightBlue5 213
#define LightBlue6 214
#define LightBlue7 215 /* Lightest Shade */

#define DesertGreen0 216 /* Darkest Shade */
#define DesertGreen1 217
#define DesertGreen2 218
#define DesertGreen3 219
#define DesertGreen4 220
#define DesertGreen5 221
#define DesertGreen6 222
#define DesertGreen7 223 /* Lightest Shade */

#define Turquoise0 224 /* Darkest Shade */
#define Turquoise1 225
#define Turquoise2 226
#define Turquoise3 227
#define Turquoise4 228
#define Turquoise5 229
#define Turquoise6 230
#define Turquoise7 231 /* Lightest Shade */

122 SDL C Library Reference Manual

SDL Header Files
colors.h, Continued

/* Color Name Index Value */

#define DarkTurquoise0 232 /* Darkest Shade */
#define DarkTurquoise1 233
#define DarkTurquoise2 234
#define DarkTurquoise3 235
#define DarkTurquoise4 236
#define DarkTurquoise5 237
#define DarkTurquoise6 238
#define DarkTurquoise7 239 /* Lightest Shade */

#define UserDefined0 240
#define UserDefined1 241
#define UserDefined1 242
#define UserDefined3 243
#define UserDefined4 244
#define UserDefined5 245
#define UserDefined6 246
#define UserDefined7 247

#define UserDefined8 248
#define UserDefined9 249
#define UserDefined10 250
#define UserDefined11 251

#endif

/* colors reserved for the palette editor */
#define ReservedRed 252 /* Used by palette editor */
#define ReservedGreen 253 /* Used by palette editor */
#define ReservedBlue 254 /* Used by palette editor */
#define ReservedWhite 255 /* Used by palette editor */

#endif

SDL C Library Reference Manual 123

Appendix B: SDL Fonts

The following fonts are included with the Standard Drawing Library.

/* ===== $Id: fonts.h,v 1.9 1997/08/02 23:25:15 billr Exp $ ===== */
/**/
/* STANDARD DRAWING LIBRARY */
/* */
/* Rastergraf, Inc. */
/* Used under license from CURTISS-WRIGHT CONTROLS, INC. */
/* COPYRIGHT (C) 2001 CURTISS-WRIGHT CONTROLS, INC. */
/* */
/* This software is licensed software subject to the terms of the */
/* Source Code License Agreement. Refer to the file LICENSE for details. */
/**/
/* FILE NAME : fonts.h */
/* DATE CREATED: 8/7/95 */
/* PROJECT NAME: SDL */
/* DESCRIPTION : Define macros for 16 basic fonts for SGL */
/* AUTHOR : BR */
/* REVISIONS : */
/* NOTES : */
/* FUNCTIONS : */
/**/

#ifndef FONTS_H
#define FONTS_H

#define HELVR12 0 /* Helvetica 12pt Normal Prop. Spaced */
#define HELVR08 1 /* Helvetica 8pt Normal Prop. Spaced */
#define HELVR10 2 /* Helvetica 10pt Normal Prop. Spaced */
#define HELVR14 3 /* Helvetica 14pt Normal Prop. Spaced */
#define HELVR18 4 /* Helvetica 18pt Normal Prop. Spaced */
#define HELVR24 5 /* Helvetica 24pt Normal Prop. Spaced */
#define CLR6X6 6 /* Clear 6x6 Normal Fixed Width */
#define CLR8X8 7 /* Clear 8x8 Normal Fixed Width */
#define CLR8X16 8 /* Clear 8x16 Normal Fixed Width */
#define FIX12X24RK 9 /* 12x24 Normal Fixed Width Roman-Kana */
#define HELVB14 10 /* Helvetica 14pt Bold Prop. Spaced */
#define HELVB18 11 /* Helvetica 18pt Bold Prop. Spaced */
#define HELVB24 12 /* Helvetica 24pt Bold Prop. Spaced */
#define HELVBO14 13 /* Helvetica 14pt BoldOblique Prop. Spaced */
#define HELVBO18 14 /* Helvetica 18pt BoldOblique Prop. Spaced */
#define HELVBO24 15 /* Helvetica 24pt BoldOblique Prop. Spaced */
#define RGBOLD36 16 /* RGI Bold Fixed 36x78 */
#define RGSWISS44 17 /* RGI Swiss Fixed 44x70 */
#define CURSOR1 18 /* RGI Cursor Font #1 (16x16) */
#define CURSOR2 19 /* RGI Cursor Font #2 (32x32) */

#endif

124 SDL C Library Reference Manual

Fonts Included with SDL

The following are samples of the 16 fonts supplied with SDL and the number of bytes of memory
required for the font. The complete character sets for these fonts are shown on the following
pages.

Size Font Style

8880

1380

2404

6988

8924

11392

7540

9232

12096

1124

5600

5912

6216

6816
8372

11124

37924

40804

SDL C Library Reference Manual 125

ACKNOWLEDGEMENTS:

The Clean fonts are Copyright 1989 Dale Schumacher, dal@syntel.mn.org, 399 Beacon
Ave., St. Paul, MN 55104-3527

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose and without fee is hereby granted, provided that the above copyright notice
appear in all copies and that both that copyright notice and this permission notice appear
in supporting documentation, and that the name of Dale Schumacher not be used in
advertising or publicity pertaining to distribution of the software without specific, written
prior permission. Dale Schumacher makes no representations about the suitability of this
software for any purpose. It is provided "as is" without express or implied warranty.

The X11 Helvetica fonts are:
Copyright 1984-1989, 1994 Adobe Systems Incorporated.
Copyright 1988, 1994 Digital Equipment Corporation.

Adobe is a trademark of Adobe Systems Incorporated which may be registered in certain
jurisdictions. Permission to use these trademarks is hereby granted only in association
with the images described in this file.

Permission to use, copy, modify, distribute and sell this software and its documentation
for any purpose and without fee is hereby granted, provided that the above copyright
notices appear in all copies and that both those copyright notices and this permission
notice appear in supporting documentation, and that the names of Adobe Systems and
Digital Equipment Corporation not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission. Adobe Systems and
Digital Equipment Corporation make no representations about the suitability of this
software for any purpose. It is provided "as is" without express or implied warranty.

Helvetica is a trademark of Linotype-Hell AG and/or its subsidiaries.

SDL C Library Reference Manual 127

Appendix C: Function Code Size and Dependency Chart

Some of the SDL functions use common code with different entry points. This means that
the scaleable capabilities of SDL are, in some cases, limited to groups of functions. The
chart below shows the SDL functions that must be used as a group. The x’s in the column
below indicate the functions that must be used as a group. Each column represents a
separate group of functions. The Code and RAM requirements in bytes are for the processor
listed.

See Appendix B for SDL font sizes.

Code Size for 68040 Processor
Function Groups of Functions Code RAM
arc() 3076 0
circle() 416 0
clearScreen() x 52 0
closeGraphics() x 0
dashedLine() x 60 0
dashedPolyline() x x x 2256 0
dashedRectangle() x 116 0
drawPixel() 40 0
drawText() 1976 16 x no. of chars
ellipse() 684
fatLine() 2604
filledArc() x 572 4 x height of rectangle
filledCircle() 352
filledEllipse() x
filledPolygon() 2052
filledRectangle() 188
getFontStruct() 116
getPixel() x 76
getTextWidth() 292 16 x no. of chars
initGraphics() x 628 112+ 3 x screen width
line() x 60 0
polyline() x x x 844 0
rectangle() x 116 0
setArcMode() 28 0
setBackground() 16 0
setClipRect() 196 0
setDashPattern() x 112 0
setDashStyle() x
setFillRule() 36 0
setFillStyle() 36 0
setFont() 36 0
setForeground() 16 0
setLineWidth() 20
setOrigin() 28 0
setPattern() 68 0
setPatternOrigin() 68 0
setPixelProcessing() 44 0
setTextDirection() 28
setTransparency() 16 0
userinit() 800 4 x no. of fonts

128 SDL C Library Reference Manual

SDL Functions Code Size and Dependency Chart
Some of the SDL functions use common code with different entry points. This means that
the scaleable capabilities of SDL are, in some cases, limited to groups of functions. The
chart below shows the SDL functions that must be used as a group. The x’s in the column
below indicate the functions that must be used as a group. Each column represents a
separate group of functions. The Code and RAM requirements in bytes are for the processor
listed.

See Appendix B for SDL font sizes.

Code Size for 603 PowerPC Processor
Function Groups of Functions Code RAM
arc() 3868 68
circle() 460
clearScreen() x 84 0
closeGraphics() x
dashedLine() x 64 0
dashedPolyline() x x x 3868 0
dashedRectangle() x 168 0
drawPixel() 60 0
drawText() 3124 16 x no. of chars
ellipse() 794
fatLine()
filledArc() x 784 168 + 4 x rect. height
filledCircle() 454
filledEllipse() x
filledPolygon() 3504 254
filledRectangle() 256 0
getFontStruct() 168 0
getPixel() x 108 0
getTextWidth() 568 16 x no. chars
initGraphics() x 796 156 + 3 x screen width
line() x 64 0
polyline() x x x 1508 0
rectangle() x 168 0
setArcMode() 32 0
setBackground() 16 0
setClipRect() 316 0
setDashPattern() x 140 0
setDashStyle() x
setFillRule() 48 0
setFillStyle() 48 0
setFont() 56 0
setForeground() 16 0
setLineWidth()
setOrigin() 24 0
setPattern() 88 0
setPatternOrigin()
setPixelProcessing() 72 0
setTextDirection()
setTransparency() 16 0
userinit() 812 4 x no. of fonts

SDL C Library Reference Manual 129

Appendix D: Cursors and Cursor Bitmaps

The bitmap, size and name of the predefined cursors supported by SDL are shown in the
table below. Cursors 40-49 are only available on VMEbus graphics boards.

Cursor Number Cursor Size Cursor Name Cursor Bitmap

0 16 x16 MSC_left_arrow

1 16 x16 MSC_arrow

2 16 x16 MSC_center_ptr

3 16 x16 MSC_down_center_ptr

4 16 x16 MSC_double_arrow

5 16 x16 MSC_lr_double_arrow

6 16 x16 MSC_fleur

7 16 x16 MSC_exchange

8 16 x16 MSC_left_side

9 16 x16 MSC_right_side

10 16 x16 MSC_top_side

11 16 x16 MSC_bottom_side

12 16 x16 MSC_top_left_corner

13 16 x16 MSC_top_right_corner

14 16 x16 MSC_bottom_left_corner

15 16 x16 MSC_bottom_right_corner

16 16 x16 MSC_sb_left_arrow

17 16 x16 MSC_sb_right_arrow

18 16 x16 MSC_sb_up_arrow

19 16 x16 MSC_sb_down_arrow

20 16 x16 MSC_sb_h_double_arrow

21 16 x16 MSC_sb_v_double_arrow

22 16 x16 MSC_circle

23 16 x16 MSC_target

24 16 x16 MSC_cross

25 16 x16 MSC_crosshair

26 16 x16 MSC_plus

27 16 x16 MSC_tcross

130 SDL C Library Reference Manual

Cursor Number Cursor Size Cursor Name Cursor Bitmap

28 16 x16 MSC_left_hand1

29 16 x16 MSC_hand1

30 16 x16 MSC_hand2

31 16 x16 MSC_right_hand2

32 16 x16 MSC_leftbutton

33 16 x16 MSC_middlebutton

34 16 x16 MSC_rightbutton

35 16 x16 MSC_xterm

36 16 x16 MSC_watch

37 16 x16 MSC_pencil

38 16 x16 MSC_gumby

39 16 x21 MSC_hour_glass16

40 32x32 MSC_NW_arrow32

41 32x32 MSC_NE_arrow32

42 32x32 MSC_NW_hand32

43 32x32 MSC_NE_hand32

44 32x32 MSC_xhair32a

45 32x32 MSC_xhair32b

46 32x32 MSC_xhair32c

47 32x32 MSC_xhair32d

48 32x32 MSC_watch32

49 32x32 MSC_hour_glass32

SDL C Library Reference Manual 131

Appendix E: Video Capture Extensions

This appendix describes the SDL extensions for capturing and displaying video signals
(NTSC or PAL) as used with graphics cards with onboard video decoders. The decoder
digitizes the incoming video stream, converts to YUV 4:2:2 or RGB16 format and feeds it
either to the VPORT port on the graphics controller or DMA’s it direct to frame buffer
memory. The graphics controller supports cropping and scaling of the input image and
panning and zooming of the image as it is displayed on screen.

The size and position of the image on the screen is controlled by three rectangles:
vidSrcRect, vidCapRect and vidDstRect and the pan start point vidPanStart. Their
relationship is roughly this:

The functions setVIdeoSourceRect(), setCaptureSize() and setVideoDisplayRect() are
used to set the size and position of these rectangles. SetVideoPanStart() sets the starting
location in the capture rectangle that maps to the upper left corner of the display
rectangle. The scale and zoom factors are automatically computed and set based on the
three basic rectangles.

source rect
display rect

capture rect

image screen

video
memory

scale zoom

capture playback

pan start
image rect

132 SDL C Library Reference Manual

Video Capture Programming Example

This example shows how to use some of the SDL video capture extensions. The
example starts by initializing the graphics and video capture hardware, then sets up the
hardware to capture and display the upper left quarter of the video source image. The
color-key feature is used to show video only in a specific window on the display. Next, the
video image is resized to full screen capture and display. The use of color-keying to
overlay graphics objects on top of the video image is demonstrated, followed by a single
frame capture. Finally, the video image is rescaled to one-half full size and displayed in
the center of the screen.

Listing of captest.c

/* example video capture program */
#include <sdl.h>
#include <extern.h>
#include <colors.h>

/* used for overlay graphics */
sPoint triangle[3] = { {120, 380}, {80, 460}, {160, 460} };

int captest(int argc, char **argv)
{
 /* initialize graphics hardware */
 initGraphics(argc, argv);

#ifndef SDL2_X
 /* in SDL 3.1 and later, we need to configure the video decoder */
 /* and capture port on the graphics controller NTSC analog input */
 /* to first decoder and YUV422 output on SPI port */
 setVideoDeviceConfig(VDEV_DECODER1, VDEC_ANALOG, NTSC, VDEC_SPI,
 VID_YUV422);
 /* associate first video decoder with first graphics controller, */
 /* with input to the graphics controller coming from the Vport */
 /* interface in YUV422 pixel format */
 setVideoDisplayConfig(GDEV_0, VDEV_DECODER1, VPORT_VPORT, VID_YUV422,
 CAPTURE_ODD, 0, 0);
#endif

 /* initialize video capture hardware for NTSC video */
 initCapture(NTSC);

 /* select first composite video input (VIN0) */
 videoSelect(CVIDEO1, FALSE);

 /* set source and display rectangles for 1/4 frame */
 /* capture and display (full size would be 640x480) */
 setVideoSourceRect(0, 0, 320, 240);
 setVideoDisplayRect(0, 0, 320, 240);

 /* enable video capture hardware */
 capture(1);

 /* enable video playback */
 playback(1);

SDL C Library Reference Manual 133

 /* grab continuous frames of video */
 grabFrame(0);

 /* 1/4 frame capture; colorkeyed display */
 /* (video only where blue rectangle is) */

 /* turn video playback off, while we set things up */
 playback(0);

 /* draw a blue rectangle in video memory */
 setForeground(LightBlue);
 filledRectangle(100, 100, 160, 120);

 /* set color key color and enable color-keying */
 setColorKey(LightBlue);
 colorKey(1);

 /* turn video playback on */
 playback(1);

 /* resize source and display rectangles to full frame */
 setVideoSourceRect(0, 0, 640, 480);
 setVideoDisplayRect(0, 0, 640, 480);

 /* draw some graphics objects on the screen */
 clearScreen();
 setForeground(LightRed);
 filledRectangle(160, 200, 320, 60);
 setForeground(LightBlue);
 circle(100, 100, 60);
 setForeground(Yellow);
 rectangle(320, 280, 100, 100);
 setForeground(LightMagenta);
 filledPolygon(3, triangle);

 /* By setting the color key to Black, the video image will be */
 /* displayed anywhere there is black - which is everywhere there */
 /* are no graphics drawn. This achieves the effect of having the */
 /* graphics appear as an overlay on top of the video image when */
 /* color-keying is turned on, or video overlayed on top of graphics */
 /* when color-keying is turned off. */
 setColorKey(Black);

 /* full frame capture with overlayed video - no graphics visible */
 colorKey(0);

 /* full frame capture with overlayed graphics - graphics "on top" */
 colorKey(1);

 /* single frame grab */
 grabFrame(1);

 /* continuous grab */
 grabFrame(0);

 /* scale acquisition by 1/2 (centered) */
#ifndef SDL2_X
 setVideoSourceRect(0, 0, 320, 240);
#else

134 SDL C Library Reference Manual

 /* note that capture width is 2x the pixel width */
 setCaptureSize(640, 240); /* half-size */
#endif

 /* resize displayed rectangle to match and */
 /* position it in the center of the screen */
 setVideoDisplayRect(160, 120, 320, 240);

 /* turn off capture and playback */
 capture(0);
 playback(0);
 colorKey(0);

 /* graphics driver cleanup */
 closeGraphics();
}

SDL C Library Reference Manual 135

Video Capture Extensions C Function Summary

Function Name Description
void capture(int con); Enable/disable video capture
int checkDma(sDmaInfo *pDma); Check status of current DMA transfer
void colorKey(int kon); Enable/disable color key insert of video
int decoderFrameIRQ(void) Report status of video decoder interrupt
void decoderFrameIRQClear(void) Clear any pending video decoder

interrupts
void doubleBuffer(int dbon); Enable/disable double buffer capture
void enableDecoderIRQ(void) Enable/disable video decoder interrupt
void enableVBlankIRQ(void) Enable/disable video blanking interrupt
int getCapBuffSize(void) Get size of the video capture buffer
int getDisplayBuffer(void) Get current video display buffer number
unsigned char *getVideoFramebufPtr(void); Get pointer to video capture buffer
void getVideoImage(int x, int y, int w, int h, unsigned char *buff, int buffno);
 Copy image from capture to host memory
void grabFrame(int sshot); Grab frames continuous or single-shot
void initCapture(int mode); Initialize video capture hardware
void interlace(int ion, int zoom); Force interlaced or non-interlaced capture
int lastBuffer(void); Report last buffer filled (double buffering)
void playback(int pon); Enable/disable video playback
void putVideoImage(unsigned char *buff, int x, int y, int w, int h, int buffno);
 Copy image from host to capture memory
void setCaptureSize(int cwidth, int cheight); Set size of video capture buffer
void setColorKey(unsigned long color); Set color used for color-keying video
insert
void setDisplayBuffer(int buffnr) Set current video display buffer number
int setVideoCaptureConfig(int gdev, int vdec, int iport, int format, int fields, int skip, int window);
 Configure video capture/display hardware
void setVideoCropOffset(int ox, int oy); Set offset to default cropping rect for video
 capture
int setVideoDeviceConfig(int vdev, int iport, int iformat, int oport, int oformat);
 Configure video decoder hardware
void setVideoDisplayRect(int x, int y, int w, int h); Set size and position of video insert
void setVideoFormatRect(int x, int y, int w, int h, int vf); Set size of video source data
void setVideoPanStart(int sx, int sy); Pan displayed video insert rectangle
void setVideoSourceRect(int x, int y, int w, int h); Set size and position of capture window
sDmaInfo *startDma(int dev, int flags, unsigned char *vptr, unsigned char *pptr);
 Initiate a DMA transfer
void stopDma(sDmaInfo *pDma); Stop current DMA transfer
int vBlankIRQ(void) Report status of vertical blanking interrupt
void vBlankIRQClear(void) Clear any pending graphics controller

interrupts
char videoBrightness(char bright); Set brightness level of digitized video
int videoContrast(int cont); Set contrast level of digitized video
char videoHue(char hue); Set hue level of digitized video
int videoSatU(int satu); Set U saturation level of digitized video

136 SDL C Library Reference Manual

int videoSatV(int satv); Set V saturation level of digitized video
void videoSelect(int channel, int monochrome); Select video capture source
int waitForFrame(int rdy); Wait for frame ready (or not ready)
int waitForSync(void); Wait for Vsync or a timeout
void writeYUV(unsigned int pixel, void *fp, int gray, int raw); Write 32-bit word as 2 YUV pixels
void writeRGB16(unsigned int pixel, void *fp, int gray, int raw); Write 32-bit word as 2 565 pixels
void writeRGB32(unsigned int pixel, void *fp, int gray, int raw); Write 32-bit word as 3 byte RGB

SDL C Library Reference Manual 137

 capture
NAME

capture - enable/disable video capture

SYNOPSIS
void capture

(
int con /* 0 == disable, 1 == enable */
)

DESCRIPTION

When con is TRUE, this function configures the video capture hardware and enables it.
When con is FALSE, the video capture hardware is disabled.

No video data will actually be stored in capture memory unless the graphics processor
hardware has been started with grabFrame(). No video data will be visible on the display
unless video playback has been enabled with playback().

INCLUDE FILES

sdl.h

SEE ALSO

grabFrame(), playback()

138 SDL C Library Reference Manual

checkDma
NAME

checkDma – test for completion of a DMA operation

SYNOPSIS
int checkDma

(
sDmaInfo *dma /* DMA info for this transfer */
)

DESCRIPTION

This function may be used to check for completion of a non-continuous DMA operation
previously started with startDma().

RETURNS

int /* DMA status: 0 = not finished, 1 = completed */

INCLUDE FILES

sdl.h

SEE ALSO

startDma(), stopDma()

SDL C Library Reference Manual 139

 colorKey
NAME

colorKey - enable/disable color key insert of video

SYNOPSIS
void colorKey

(
int kon /* 0 == disable, 1 == enable */
)

DESCRIPTION

Color keying is used to “window” the displayed video image onto the screen. When color
keying is enabled, the pixels of the screen that are displaying the color key color are
replaced by the corresponding pixel of the video image data. When kon is TRUE, color
keying is enabled; when kon is FALSE, color keying is disabled. Use setColorKey() to
set the color key color.

Color keying can also be used to simulate a display that has a video image with
overlayed graphics. Normally, on a graphics display, the background color is black. By
setting the color key color to black and enabling color keying, all of the black pixels will
display parts of the video image, while graphics other than black will display those
graphics. This makes it appear as though the graphics were drawn on top of (overlayed
on) the video image. This will not work if the graphics data contains objects that are
drawn or filled in black.

INCLUDE FILES

sdl.h

SEE ALSO

setColorKey()

video image color key region

color keyed result

+

140 SDL C Library Reference Manual

decoderFrameIRQ
NAME

decoderFrameIRQ – report status of video decoder interrupt

SYNOPSIS
int decoderFrameIRQ(void)

DESCRIPTION

This function can be used to help determine the source of an interrupt in an interrupt
handler. If the function returns true, the interrupt should be cleared by calling
decoderFrameIRQClear() after doing any required interrupt processing.

RETURNS

int /* 0 = no pending interrupt, 1 = interrupt pending */

INCLUDE FILES

sdl.h

SEE ALSO

decoderFrameIRQClear(), enableDecoderIRQ()

SDL C Library Reference Manual 141

 decoderFrameIRQClear
NAME

decoderFrameIRQClear – clear any pending video decoder interrupts

SYNOPSIS
void decoderFrameIRQClear(void)

DESCRIPTION

This function is called at the end of an interrupt handler or polling loop to clear the
interrupt request after it has been handled.

INCLUDE FILES

sdl.h

SEE ALSO

decoderFrameIRQ(), enableDecoderIRQ()

142 SDL C Library Reference Manual

doubleBuffer
NAME

doubleBuffer – enable or disable double buffering on capture

SYNOPSIS
void doubleBuffer

(
int dbon /* 0 == disable, 1 == enable */
)

void doubleBuffer
(
int extra_bufs /* number of extra buffers (Atlas) */
)

DESCRIPTION

This function may be used to override the default use of double buffer for video capture.
The default for non-interlaced sources is to not use double buffering. It is enabled, by
default, when capturing interlaced video on the RG-101 boards.

Double buffering places each captured field (or frame if non-interlaced) into alternating
memory buffers. This is most often used when capturing interlaced video to allow
interleaving the two fields to build a complete frame for display. It is also useful when
doing post processing on the video data, as it allows capturing a new frame while
working on another frame.

 With the VFG-M boards, interlaced video is automatically stored in interleaved memory
such that when both fields have been captured, the full frame is available in contiguous
capture memory and the double buffering flag is usually ignored.

Starting with SDL version 3.6.1 the Atlas driver supports multiple capture buffers. Each
buffer will contain a full frame of video data. The extra_bufs argument to doubleBuffer()
specifies the number of extra capture buffers desired. Each buffer is of length
getCapBuffSize() and adjacent to each other in memory. An argument value of 1 means
one extra buffer (total of two), an argument of 2 means two extra buffers (three total). The
default is 0 (no extra buffers).

INCLUDE FILES

sdl.h

SEE ALSO

interlace(), getCapBuffSize()

SDL C Library Reference Manual 143

 enableDecoderIRQ
NAME

enableDecoderIRQ – enable/disable video decoder interrupt

SYNOPSIS
void enableDecoderIRQ(int onOff)

DESCRIPTION

EnableDecoderIRQ is used to enable (onOff = 1) or disable (onOff = 0) interrupts from
the video decoder. Interrupts are generated at the end of each frame, which may consist
of odd fields only, even fields only, or both odd and even fields. Video decoder interrupts
are not supported on all graphics boards.

INCLUDE FILES

sdl.h

SEE ALSO

decoderFrameIRQ(), decoderIRQClear()

144 SDL C Library Reference Manual

enableVBlankIRQ
NAME

enableVBlankIRQ – enable/disable video blanking interrupt

SYNOPSIS
void enableVBlankIRQ(int onOff)

DESCRIPTION

EnableVBlankIRQ is used to enable (onOff = 1) or disable (onOff = 0) interrupts from the
graphics controller. Interrupts are generated at the start of each vertical blanking interval.
Video blanking interrupts are not supported on all graphics boards.

INCLUDE FILES

sdl.h

SEE ALSO

vBlankIRQ(), vBlankIRQClear()

SDL C Library Reference Manual 145

 getCapBuffSize
NAME

getCapBuffSize – get size of the video capture buffer

SYNOPSIS
int getCapBuffSize(void)

DESCRIPTION

This routine returns the size of the video capture buffer. This size is valid only for the
current device context. If the active video device is changed, the size may become
invalid, so this function should be called again to obtain the updated value.

This is most often used in double buffer situations to find the address of the second and
subsequent video capture or display buffers given the starting address of the capture
region.

RETURNS

int /* size of video capture buffer */

INCLUDE FILES

sdl.h

SEE ALSO

doubleBuffer(), getVideoFramebufPtr()

146 SDL C Library Reference Manual

getDisplayBuffer
NAME

getDisplayBuffer – gets current video display buffer number

SYNOPSIS
int getDisplayBuffer(void)

DESCRIPTION

This routine returns the index of the video display buffer in current use.

This is most often used in double buffer situations. Not all graphics boards support
multiple video display buffers. Note this is different from multiple graphics display buffers
(pages), manipulated by getDisplayPage() and getWritePage(). The video display
buffer contains captured video data for display by the graphics controller harware overlay
feature.

RETURNS

int /* index (0-n) of video display buffer */

INCLUDE FILES

sdl.h

SEE ALSO

setDisplayBuffer()

SDL C Library Reference Manual 147

 getVideoFramebufPtr
NAME

getVideoFramebufPtr – gets current value of the video capture buffer pointer

SYNOPSIS
unsigned char *getVideoFramebufPtr(void)

DESCRIPTION

This routine looks up the current value of the video capture buffer pointer. This pointer is
only valid for the current device context. If the active graphics device is changed, the
pointer may become invalid, so this function should be called again to obtain the updated
value.

RETURNS

unsigned char * /* pointer to video capture buffer memory (in CPU address space) */

INCLUDE FILES

sdl.h

SEE ALSO

getCapBuffSize(), getFramebufPtr()

148 SDL C Library Reference Manual

getVideoImage
NAME

getVideoImage - copy image from capture memory to host memory

SYNOPSIS
void getVideoImage

(
int x, /* x coord of upper left corner */
int y, /* y coord of upper left corner */
int w, /* width of image to copy */
int h, /* height of image to copy */
unsigned char *buff, /* buffer for image data */
int buffno /* buffer number (0 or 1) */
)

DESCRIPTION

This function copies image data from the video capture buffer and puts it in the buffer
pointed to by buff. X and y are the starting position within the capture buffer; w and h are
the width and height of the rectangular area copied. Note that the video data is typically
16-bits wide (4:2:2 YUV), so the size of the buffer pointed to by buff should be twice the
width times height. In double buffer configurations, setting buffno to 1 will copy the data
from the second capture buffer.

INCLUDE FILES

sdl.h

SEE ALSO

putVideoImage(), writeRGB16(), writeRGB32, writeYUV(), video capture example
programs

(x,y)
w

h

video
memory

host
memory

buff

SDL C Library Reference Manual 149

 grabFrame
NAME

grabFrame - grab frames continuously or as a single-shot

SYNOPSIS
void grabFrame

(
int sshot /* 0==continuous, 1==single shot */
)

DESCRIPTION

This function signals the graphics processor to read and store the digitized video into the
video capture buffer. When sshot is 1 or -1, a single frame is grabbed and transferred to
the video capture buffer, otherwise the video data in the capture buffer is continuously
updated. Normally, the grab is not initiated until after the next vertical sync. The special
value –1 for sshot skips the wait for vertical sync in single shot mode, allowing the
capture to overlap other processing.

No video data will actually be stored in capture memory unless the video capture
hardware has been enabled with capture(). No video data will be visible on the display
unless video playback has been enabled with playback().

INCLUDE FILES

sdl.h

SEE ALSO

capture(), playback()

150 SDL C Library Reference Manual

initCapture
NAME

initCapture - initialize video capture hardware

SYNOPSIS
void initCapture

(
int mode /* video source format */
)

DESCRIPTION

This function initializes the video capture and processing hardware. It does not actually
start the capture or display process. In SDL version 3.1 and later, the video decoder
hardware and video capture hardware are configured independently, as some graphics
boards have multiple decoders and multiple graphics controllers on the same board. This
configuration is done with the setVideoDeviceConfig() and setVideoCaptureConfig()
functions. The available modes are listed in sdl.h as:

#define NTSC 0 /* NTSC square pixel [640x480] */
#define PAL 1 /* PAL square pixel [768x576] */
#define CCIR_NTSC 2 /* NTSC CCIR601 [720x480] */
#define CCIR_PAL 3 /* PAL CCIR601 [720x576] */
#define NTSC_2_1 4 /* NTSC square pixel CIF (2:1 scaling) [320x240] */
#define PAL_2_1 5 /* PAL square pixel CIF (2:1 scaling) [384x288] */
#define SECAM 8 /* SECAM */
#define CCIR_656 16 /* CCIR 656 digital video */
#define SMPTE_125 17 /* Modified SMPTE-125 digital video */
#define VGA_RGB 18 /* RGBHV input to AD9882 on Stratus */
#define VGA_MONO 19 /* monochrome RGB input to AD9882 on Stratus */
#define VGA_YC 19 /* old name */
#define VGA_RGB_SOG 20 /* RGB+SOG input to AD9882 on Stratus */
#define VGA_MONO_SOG 21 /* monochrome RGB+SOG input to AD9882 */
#define VGA_DVI 22 /* DVI input to AD9882 on Stratus */
#define STANAG_A 23 /* STANAG-A input to AD9882 [1080x808 interlaced]
*/
#define STANAG_B 24 /* STANAG-B input to AD9882 [768x574 interlaced] */
#define STANAG_C 25 /* STANAG-C input to AD9882 [640x484 interlaced] */
#define SONY_DXC990 26 /* Sony DXC-990 cam. with AD9882 [768x494 ilace] */

Note: not all capture modes are available on all graphics boards. The STANAG-A/B/C
capture modes allow capturing a monochrome composite STANAG format signal using
the onboard AD9882 decoder on the Stratus and Garnet boards. The video source is fed
to the Red (VIN0) input. The Sony DXC-990 capture uses the RGB + SOG output from
the camera. The decoder is forced into interlaced capture.

INCLUDE FILES

sdl.h

SEE ALSO

capture(), grabFrame(), playback(), setVideoDeviceConfig(),
setVideoCaptureConfig()

SDL C Library Reference Manual 151

 interlace
NAME

interlace - force interlaced/non-interlaced video capture

SYNOPSIS
void interlace

(
int ion, /* 0 = non-interlaced, 1 = interlaced */
int zoom /* 0 = normal, 1 = 2X vertical zoom */
)

DESCRIPTION

This routine is used to override the default setting of the interlaced capture flag. The
default for most video decoders is to enable interlaced operation. The default for the
AD9882 decoder, used on the some graphics boards, is non-interlaced. When ion is
TRUE, interlaced video capture is enabled. This also enables double buffering.

The zoom flag enables a 2x vertical zoom in non-interlaced mode. This would be useful
when aquiring video data from an interlaced source with the controller in non-interlaced
mode. This has the effect of capturing half the active lines and compressing them into
half the normal memory space. E.g. on a 640x480 interlaced camera image, acquiring in
non-interlaced mode will use only 640x240*2 bytes of capture memory. The 2x vertical
zoom will restore the original vertical size (with duplicated lines).

INCLUDE FILES

sdl.h

SEE ALSO

doubleBuffer (), initCapture()

152 SDL C Library Reference Manual

lastBuffer
NAME

lastBuffer – gets number of the last buffer filled

SYNOPSIS
int lastBuffer(void)

DESCRIPTION

In double buffer capture (default for interlaced video sources), two memory buffers are
used for the digitized video data (one for each field). This function can be used to
determine which buffer was last filled.

RETURNS

int /* last buffer filled (0 or 1) */

INCLUDE FILES

sdl.h

SEE ALSO

doubleBuffer()

SDL C Library Reference Manual 153

 playback
NAME

playback - enable/disable video playback

SYNOPSIS
void playback

(
int pon /* 0 = disable, 1 = enable */
)

DESCRIPTION

This routine is used enable and disable the display of the captured video data on the
screen. When pon is TRUE, playback is enabled; when pon is FALSE, playback is
disabled.

No video data will actually be stored in capture memory unless the video capture
hardware has been enabled with capture() and the graphics processor hardware has
been started with grabFrame().

INCLUDE FILES

sdl.h

SEE ALSO

capture(), grabFrame()

154 SDL C Library Reference Manual

putVideoImage
NAME

putVideoImage - copy image from host memory to capture memory

SYNOPSIS
void putVideoImage

(
unsigned char *buff, /* buffer containing image data */
int x, /* x coord of upper left corner */
int y, /* y coord of upper left corner */
int w, /* width of image to copy */
int h, /* height of image to copy */
int buffno /* buffer number (0 or 1) */
)

DESCRIPTION

This function copies image data from the buffer pointed to by buff and puts it in the video
capture buffer. X and y are the starting position within the capture buffer; w and h are the
width and height of the rectangular area copied. Note that the video data is typically 16-
bits wide (4:2:2 YUV), so the size of the buffer pointed to by buff should be twice the
width times height. In double buffer configurations, setting buffno to 1 will copy the data
from the second capture buffer.

INCLUDE FILES

sdl.h

SEE ALSO

getVideoImage(), writeRGB16(), writeRGB32, writeYUV(), video capture example
programs

(x,y)
w

h

video
memory

host
memory

buff

SDL C Library Reference Manual 155

 setCaptureSize
NAME

setCaptureSize - set size of video capture buffer

SYNOPSIS
void setCaptureSize

(
int cwidth, /* width of capture buffer rect */
int height /* height of capture buffer rect */
)

DESCRIPTION

This function sets the size (width and height) of the memory region used for the video
capture buffer. The digitized video stream is scaled, by dropping pixels or scan lines, to fit
into the capture buffer width and height. When possible, downsizing is done in the video
decoder device, then via the V-Port hardware on the graphics chip, if applicable.

The function setVideoSourceRect() automatically calls setCaptureSize() to resize the
capture buffer to match the source size. To change the scaling, then, setCaptureSize()
must be called after any calls to setVideoSourceRect().
Note: for proper image display, the capture buffer size (in pixels) should be at least as
large as the video display rectangle.

NOTES

In SDL version 2.x, the width should be set to twice the desired pixel width, as the
digitized video stream is 16-bits per pixel. In SDL 3.1 and later, the actual capture buffer
width is automatically computed based on the video data pixel size. In SDL 3.1 and later,
this function is typically not used. In most instances, setVideoSourceRect() should be
used instead.

INCLUDE FILES

sdl.h

SEE ALSO

setVideoDisplayRect(), setVideoSourceRect()

156 SDL C Library Reference Manual

setColorKey
NAME

setColorKey - set color used for color-keying video insert

SYNOPSIS
void setColorKey

(
unsigned long color /* color key color */
)

DESCRIPTION

Color keying is used to “window” the displayed video image onto the screen. When color
keying is enabled, the pixels of the screen that are displaying the color key color are
replaced by the corresponding pixel of the video image data. Color specifies the color to
use as the color key. Use colorKey() to actually enable and disable the color key
operation.

Color keying can also be used to simulate a display that has a video image with
overlayed graphics. Normally, on a graphics display, the background color is black. By
setting the color key color to black and enabling color keying all of the black pixels will
display parts of the video image, while graphics other than black will display those
graphics. This makes it appear as though the graphics were drawn on top of (overlayed
on) the video image. This will not work if the graphics data contains objects that are
drawn or filled in black.

INCLUDE FILES

sdl.h, colors.h

SEE ALSO

colorKey()

video image color key region

color keyed result

+

SDL C Library Reference Manual 157

 setDisplayBuffer
NAME

setDisplayBuffer – set current video display buffer number

SYNOPSIS
void setDisplayBuffer

(
int buffer /* buffer number to display */
)

DESCRIPTION

This routine sets the index of the active video display buffer. The change becomes
effective at the next video blanking interval.

This is most often used in double buffer situations. Not all graphics boards support
multiple video display buffers. The Atlas board supports upto six video buffers. Note this
is different from using multiple graphics display buffers (pages), as manipulated by
setDisplayPage() and setWritePage(). The video display buffer contains captured video
data for display by the graphics controller hardware overlay feature.

INCLUDE FILES

sdl.h

SEE ALSO

doubleBuffer(), getDisplayBuffer()

158 SDL C Library Reference Manual

setVideoCaptureConfig
NAME

setVideoCaptureConfig - configure video capture/display hardware

SYNOPSIS
void setVideoCaptureConfig

(
int gdev, /* graphics controller device */
int vdec, /* video decoder device */
int iport, /* input port on graphics device */
int format, /* pixel format */
int fields, /* which fields to capture */
int skip, /* number of fields/frames to skip*/
int window /* video window number */
)

DESCRIPTION

This function configures the video capture and display hardware and associates a video
decoder device to this capture/display configuration. This function should be called after
the video decoder is configured via setVideoDeviceConfig(). Window can be set to
force the use of a specific overlay window when the hardware supports more than one,
or to force the use of software overlay when set to 0. Not all graphics boards will support
all the features of this command. [E.g., the RG-101 has only one video decoder and one
graphics controller, while the VFG-M has two decoders and two controllers.] Note: this
function is only available in SDL version 3.1 and later.

Macro definitions for most of the function parameters are defined in sdl.h:

/* graphics controller device */
#define GDEV_0 0x000 /* first (or only) graphics controller */
#define GDEV_1 0x100 /* second graphics controller */
/* video decoder device */
#define VDEV_HOST 0 /* host supplied video data */
#define VDEV_DECODER1 1 /* first (or only) video decoder */
#define VDEV_DECODER2 2 /* second video decoder */
#define VPORT_VPORT 0 /* capture digitized video on V-Port */
#define VPORT_PCI 1 /* capture digitized video from the PCI bus */
/* decoder input port */
#define VDEC_ANALOG 0 /* standard analog input to the multiplexor */
#define VDEC_DIGITAL 1 /* CCIR 656 digital video input */
#define VDEC_DVI 2 /* DVI digital video input */
/* decoder output pixel format */
#define VID_YUV422 0 /* YUV 4:2:2 pixel format */
#define VID_RGB16 1 /* RGB 5-6-5 pixel format */
#define VID_RGB24 2 /* RGB 8-8-8 pixel format */
#define VID_RGB32 3 /* RGB 8-8-8-8 pixel format */
#define VID_Y8 4 /* 8-bit luminance only (for monochrome) */
/* field selection */
#define CAPTURE_EVEN 1 /* capture/display EVEN field only */
#define CAPTURE_ODD 2 /* capture/display ODD field only */
#define CAPTURE_BOTH 3 /* capture/display both EVEN and ODD fields */

INCLUDE FILES

sdl.h

SEE ALSO

initCapture(), setVideoDeviceConfig()

SDL C Library Reference Manual 159

 setVideoCropOffset
NAME

setVideoCropOffset – set offset to default capture cropping rectangle

SYNOPSIS
void setVideoCropOffset

(
int ox, /* x offset to default left edge */
int oy /* y offset to default top edge */
)

DESCRIPTION

Set current values for video cropping offset. The offsets determine how much of the
incoming video image to skip before starting to save data into video memory. This can be
used to fine tune the image as it appears in the capture memory to account for
differences in vertical or horizontal blanking intervals. It is primary used with the AD982
video capture on the Stratus graphics board. Offset can be positive or negative and is an
offset from the default values. Ox is specified in pixels and oy is lines.

INCLUDE FILES

sdl.h

SEE ALSO

setVideoSourceRect()

160 SDL C Library Reference Manual

setVideoDeviceConfig
NAME

setVideoDeviceConfig - configure video decoder hardware

SYNOPSIS
void setVideoDeviceConfig

(
int vdev, /* video decoder device */
int iport, /* input port on decoder */
int iformat, /* input video format */
int oport, /* output port on decoder */
int oformat /* output pixel format */
)

DESCRIPTION

This function configures the video decoder hardware on a graphics board. This function
should be the first function called prior to using the video capture and display hardware. It
provides a way to specify the origin and destination of the video signal/data and the
video/pixel format. Note: this function is only available in SDL version 3.1 and later.

Macro definitions for most of the function parameters are defined in sdl.h:
/* video decoder device */
#define VDEV_HOST 0 /* host supplied video data */
#define VDEV_DECODER1 1 /* first (or only) video decoder */
#define VDEV_DECODER2 2 /* second video decoder */
/* decoder input port */
#define VDEC_ANALOG 0 /* standard analog input to the multiplexor */
#define VDEC_DIGITAL 1 /* CCIR 656 digital video input */
#define VDEC_DVI 2 /* DVI digital video input */
/* video input format */
#define NTSC 0 /* standard full scale NTSC video */
#define PAL 1 /* standard full scale PAL video */
#define CCIR_NTSC 2
#define CCIR_PAL 3
#define NTSC_2_1 4 /* 2:1 scaled NTSC video */
#define PAL_2_1 5 /* 2:1 scaled PAL video */
#define CCIR_NTSC_2_1 6
#define CCIR_PAL_2_1 7
#define SECAM 8 /* SECAM */
#define CCIR_656 16 /* CCIR 656 digital video */
#define SMPTE_125 17 /* Modified SMPTE-125 digital video */
#define VGA_RGB 18 /* RGBHV input to AD9882 on Stratus */
#define VGA_MONO 19 /* monochrome RGB input to AD9882 on Stratus */
#define VGA_YC 19 /* old name */
#define VGA_RGB_SOG 20 /* RGB+SOG input to AD9882 on Stratus */
#define VGA_MONO_SOG 21 /* monochrome RGB+SOG input to AD9882 */
#define VGA_DVI 22 /* DVI input to AD9882 on Stratus */
#define STANAG_A 23 /* STANAG-A input to AD9882 [1080x808 interlaced] */
#define STANAG_B 24 /* STANAG-B input to AD9882 [768x574 interlaced] */
#define STANAG_C 25 /* STANAG-C input to AD9882 [640x484 interlaced] */
#define SONY_DXC990 26 /* Sony DXC-990 cam. with AD9882 [768x494 ilace] */

SDL C Library Reference Manual 161

/* decoder output port */
#define VDEC_SPI 1 /* Streaming Pixel Interface (V-Port) */
#define VDEC_PCI 2 /* PCI bus */
/* decoder output pixel format */
#define VID_YUV422 0 /* YUV 4:2:2 pixel format */
#define VID_RGB16 1 /* RGB 5-6-5 pixel format */
#define VID_RGB24 2 /* RGB 8-8-8 pixel format */
#define VID_RGB32 3 /* RGB 8-8-8-8 pixel format */
#define VID_Y8 4 /* 8-bit luminance only (for monochrome) */

INCLUDE FILES
sdl.h

SEE ALSO
initCapture(), setVideoCaptureConfig()

162 SDL C Library Reference Manual

setVideoDisplayRect
NAME

setVideoDisplayRect - set size and position of inserted video window

SYNOPSIS
void setVideoDisplayRect

(
int x, /* x coord of origin on screen */
int y, /* y coord of origin on screen */
int w, /* width of displayed image */
int h /* height of displayed image */
)

DESCRIPTION

This function sets the origin and size of the video display window on the screen. If the
displayed image are is larger than the source image, the image is zoomed (horizontally
and vertically as needed) by pixel and/or row replication before display. Portions of the
display rectangle can be off screen, in which case the image is clipped to the screen
boundary.

Note: the width and height of the video display rectangle should not be larger than the
pixel width and height of the capture buffer.

INCLUDE FILES

sdl.h

SEE ALSO

setCaptureSize(), setVideoSourceRect()

(x,y) w

h

video
memory

display rect
capture rect

screen
w*2

h

SDL C Library Reference Manual 163

 setVideoFormatRect
NAME

setVideoFormatRect - set size and position of capture window

SYNOPSIS
void setVideoFormatRect

(
int x, /* x coord of source origin */
int y, /* y coord of source origin */
int w, /* width of image to capture */
int h, /* height of image to capture */
int vf /* vertical refresh frequency */
)

DESCRIPTION

This function sets the origin and size of the video source window (rectangle). This is used
primarily when the AD9882 is selected as the video source to “window” a smaller source
image in the display. By default, the source image size is assumed to be the same as the
display size. This function also provides a method for the driver to optimize the video
capture for the specific refresh frequency of the analog RGB image data. Vf is specified
in Hz. X and y are usually always zero.

INCLUDE FILES

sdl.h

SEE ALSO

setCaptureSize(), setVideoSourceRect(), setVideoDisplayRect()

source image

(x,y) w

h

164 SDL C Library Reference Manual

setVideoPanStart
NAME

setVideoPanStart - pan displayed video insert window

SYNOPSIS
void setVideoPanStart

(
int sx, /* x coord of pan starting point */
int sy /* y coord of pan starting point */
)

DESCRIPTION

This routine sets the origin in capture buffer memory for the video display window
(rectangle). The default origin is (0, 0) – or the start of the capture buffer. This function, in
conjunction with setVideoDisplayRect(), allows displaying just a portion of (or window
into) the captured video image.

INCLUDE FILES

sdl.h

SEE ALSO

setVideoDisplayRect()

capture rect

video
memory

pan start at (0,0)

video
memory

pan start at (sx,sy)

capture rect

(sx,sy) displayed region

SDL C Library Reference Manual 165

 setVideoSourceRect
NAME

setVideoSourceRect - set size and position of capture window

SYNOPSIS
void setVideoSourceRect

(
int x, /* x coord of source origin */
int y, /* y coord of source origin */
int w, /* width of image to capture */
int h /* height of image to capture */
)

DESCRIPTION

This function sets the origin and size of the video source window (rectangle). This can be
used to capture all, or just a portion of, the digitized video stream. If the source image is
larger than the capture buffer size, the image is scaled (horizontally and vertically as
needed) by pixel and/or scan line removal before storing in memory.

INCLUDE FILES

sdl.h

SEE ALSO

setCaptureSize(), setVideoDisplayRect()

capture rect

image
video

memory

scale

166 SDL C Library Reference Manual

startDma
NAME

startDma – start a DMA operation

SYNOPSIS
sDmaInfo *startDma

(
int dmaDev, /* DMA source this transfer */
int flags, /* DMA flags */
unsigned char *vptr, /* virtual address of destination */
unsigned char *pptr /* physical address of dest. */
)

DESCRIPTION

This function initiates a DMA transfer from graphics or video memory to another block of
memory. The destination is often system memory, but could be the framebuffer of
another graphics/video controller or another device on the PCI bus. The value of vptr is
not used by current drivers, but is saved in the DMA info structure for the convenience of
the user.

DmaDev is the source device and can have the following values, defined in sdl.h:

/* DMA source flags (support varies by board type) */
#define DMA_NONE 0
#define DMA_GDEV0_GRMEM 1 /* graphics device 0 - graphics memory */
#define DMA_GDEV0_VIMEM 2 /* graphics device 0 - video capture memory */
#define DMA_GDEV1_GRMEM 3 /* graphics device 1 - graphics memory */
#define DMA_GDEV1_VIMEM 4 /* graphics device 1 - video capture memory */
#define DMA_VDEC0 5 /* video decoder 0 */
#define DMA_VDEC1 6 /* video decoder 1 */
#define DMA_ADEC0 7 /* audio decoder 0 */
#define DMA_ADEC1 8 /* audio decoder 1 */

The flags argument is used to indicate the transfer type and is OR of the flags bits
defined in sdl.h:

/* DMA transfer flags (support varies by board type) */
#define DMA_WAIT 0 /* polled wait for entire transfer */
#define DMA_NOWAIT 1 /* interrupt driven transfer */
#define DMA_CONTINUOUS 2 /* copy on each Vblank or ZV port interrupt */
#define DMA_INTERLACE 4 /* transfer even fields only */
#define DMA_GRAPHICS_MEM 8 /* copy graphics mem instead of video mem */

RETURNS

sDmaInfo * /* pointer to DMA info structure */

NOTES

DMA_CONTINUOUS and DMA_NOWAIT are available with VxWorks and some Linux
versions only. The functionality of DMA is very dependent on the CPU board and
host bridge chip. Many PowerPC systems have problems, but it is reported to work
on the Motorola MVME5100.

INCLUDE FILES

sdl.h

SEE ALSO

checkDma(), stopDma()

SDL C Library Reference Manual 167

 stopDma
NAME

stopDma – stop a DMA operation

SYNOPSIS
void stopDma

(
sDmaInfo *dma /* DMA info for this transfer */
)

DESCRIPTION

This function may be used to terminate a DMA operation previously started with
startDma().

INCLUDE FILES

sdl.h

SEE ALSO

checkDma(), startDma()

168 SDL C Library Reference Manual

vBlankIRQ
NAME

vBlankIRQ – report status of vertical blanking interrupt

SYNOPSIS
int vBlankIRQ(void)

DESCRIPTION

This function can be used to help determine the source of an interrupt in an interrupt
handler. If the function returns true, the interrupt should be cleared by calling
vBlankIRQClear() after doing any required interrupt processing. If the graphics controller
supports multiple channels, the return value will indicate which channel generated the
interrupt.

RETURNS

int /* 0 = no pending interrupt, non-zero = interrupt pending and channel */

INCLUDE FILES

sdl.h

SEE ALSO

vBlankIRQClear(), enableVBlankIRQ()

SDL C Library Reference Manual 169

 vBlankIRQClear
NAME

vBlankIRQClear – clear any pending graphics controller interrupts

SYNOPSIS
void vBlankIRQClear(void)

DESCRIPTION

This function is called at the end of an interrupt handler or polling loop to clear the
interrupt request after it has been handled.

INCLUDE FILES

sdl.h

SEE ALSO

vBlankIRQ(), enableVBlankIRQ()

170 SDL C Library Reference Manual

videoBrightness
NAME

videoBrightness - Set brightness level of digitized video

SYNOPSIS
char videoBrightness

(
char bright /* signed brightness adjustment */
)

DESCRIPTION

This routine is used to adjust the brightness to the digitized video. This value is added to
the luminance value to adjust the final brightness. The brightness can be adjusted in 255
steps, from –100% (–128) to +100% (+127). Each step is a 0.78% change with respect to
the full scale. The previous brightness adjustment value is returned.

The default value for the brightness adjust is 0 (0%).

INCLUDE FILES

sdl.h

RETURNS

char /* old brightness adjustment */

SEE ALSO

videoContrast(), videoHue(), videoSatU(), videoSatV()

SDL C Library Reference Manual 171

 videoContrast
NAME

videoContrast - set contrast level of digitized video

SYNOPSIS
int videoContrast

(
int cont /* luma gain adjustment */
)

DESCRIPTION

This routine is used to adjust the luma gain of the digitized video. This value is multiplied
by the luminance value to provide contrast adjustment. The luma gain can be adjusted in
512 steps, from 236.57% (511) to 0% (0). Each step is a 0.46% change with respect to
the incoming luma value. The previous luma gain value is returned.

The default value for luma gain is 216 (100%).

INCLUDE FILES

sdl.h

RETURNS

int /* old gain value */

SEE ALSO

videoBrightness(), videoHue(), videoSatU(), videoSatV()

172 SDL C Library Reference Manual

videoHue
NAME

videoHue - set hue level of digitized video

SYNOPSIS
char videoHue

(
char hue /* signed hue adjustment */
)

DESCRIPTION

This routine is used to adjust the hue to the digitized video. The hue can be adjusted in
256 steps, from –90° (–128) to +89.3° (+127). Each step is a 0.7° change. The previous
hue adjustment value is returned.

The default value for hue adjustment is 0 (0°).

INCLUDE FILES

sdl.h

RETURNS

char /* old hue adjustment */

SEE ALSO

videoBrightness(), videoContrast(), videoSatU(), videoSatV()

SDL C Library Reference Manual 173

 videoSatU
NAME

videoSatU - set U saturation level of digitized video

SYNOPSIS
int videoSatU

(
int satu /* chroma U value */
)

DESCRIPTION

This routine is used to add a gain adjustment to the U component of the video [chroma]
signal. This value is multiplied by the luminance value to provide contrast adjustment.
The U gain can be adjusted in 512 steps, from 201.18% (511) to 0% (0). Each step is a
0.39% change with respect to the incoming U value. The previous U gain value is
returned.

By adjusting the U and V color components of the video stream by the same amount, the
saturation is adjusted. For normal saturation adjustment, the gain in both color difference
paths must be the same (i.e. the ratio between the U gain and the V gain should be kept
constant at the default ratio).

The default value for the U gain is 254 (100%).

INCLUDE FILES

sdl.h

RETURNS

int /* old gain value */

SEE ALSO

videoBrightness(), videoContrast(), videoHue(), videoSatV()

174 SDL C Library Reference Manual

videoSatV
NAME

videoSatV - set V saturation level of digitized video

SYNOPSIS
int videoSatV

(
int satv /* chroma V value */
)

DESCRIPTION

This routine is used to add a gain adjustment to the V component of the video [chroma]
signal. This value is multiplied by the luminance value to provide contrast adjustment.
The V gain can be adjusted in 512 steps, from 283.89% (511) to 0% (0). Each step is a
0.56% change with respect to the incoming V value. The previous V gain value is
returned.

By adjusting the U and V color components of the video stream by the same amount, the
saturation is adjusted. For normal saturation adjustment, the gain in both color difference
paths must be the same (i.e. the ratio between the U gain and the V gain should be kept
constant at the default ratio).

The default value for the V gain is 180 (100%).

INCLUDE FILES

sdl.h

RETURNS

int /* old gain value */

SEE ALSO

videoBrightness(), videoContrast(), videoHue(), videoSatU()

SDL C Library Reference Manual 175

 videoSelect
NAME

videoSelect - select video capture source

SYNOPSIS
void videoSelect

(
int channel, /* video input select */
int monochrome /* 0 == color, 1 == monochrome */
)

DESCRIPTION

This function selects which video source is digitized and sent to the graphics processor
(when more than one channel is supported). The RG-101 supports three video input
sources — two composite video and one component video (Svideo). The VFG-M
supports four composite and one component video sources. They are listed in sdl.h as:

#define CVIDEO1 0 /* composite video 1 (Mux0 on VFG-M) */
#define CVIDEO2 1 /* composite video 2 (Mux1 on VFG-M) */
#define CVIDEO3 3 /* composite video 3 (Mux2 on VFG-M) */
#define CVIDEO4 4 /* composite video 4 (Mux3 on VFG-M) */
#define SVIDEO 2 /* S-video 1 */
#define GPIO_DIG 16 /* digital video on GPIO port */
#define RGBHV 17 /* analog RGBHsVs video */
#define TEST_PATN 64 /* internal test pattern (e.g. color bars) */
#define LOOPBACK 65 /* loopback from composite video output */

Set monochrome to TRUE to optimize the video digitization when the video signal is
known to be monochrome (black and white).

The default value for the video source is CVIDEO1 (color).

INCLUDE FILES

sdl.h

176 SDL C Library Reference Manual

waitForFrame
NAME

waitForFrame – wait for capture of a new frame

SYNOPSIS
int waitForFrame

(
int rdy /* wait flag: 0 = not ready, 1 = ready */
)

DESCRIPTION

This function may be used to check the status of a capture operation previously started
with grabFrame().This is most often used to detect when a full image has been captured
so the host program can do processing on the video data. The timeout is approximately
60-80 ms.

RETURNS

int /* Frame status: 0 = no frame (timeout), 1 = match found (grab or no grab) */

INCLUDE FILES

sdl.h

SEE ALSO

waitForSync()

SDL C Library Reference Manual 177

 waitForSync
NAME

waitForSync – wait for vertical sync or timeout

SYNOPSIS
int waitForSync(void)

DESCRIPTION

This function may be used to delay a program until a vertical sync is recognized by the
capture engine or video decoder. It can also be used as a check for presence of a valid
video input for testing for a timeout error return. The timeout is approximately 60-80 ms.

RETURNS

int /* Vsync status: 0 = no sync (timeout), 1 = Vsync found */

INCLUDE FILES

sdl.h

SEE ALSO

waitForFrame()

178 SDL C Library Reference Manual

writeRGB16
NAME

writeRGB16 – convert and write 16-bit pixels to a file

SYNOPSIS
int writeRGB16

(
unsigned int pixel, /* 32-bit word from framebuffer */
void *fp, /* FILE pointer */
int gray, /* grayscale flag */
int raw /* raw data write flag */
)

DESCRIPTION

This function converts the 32-bit word, pixel, into two 16-bit (5-6-5 RGB) pixels, which are
wriiten to the file specified by fp. Byte swapping is done on pixel if required by the CPU
architecture. If gray is non-zero, the image data is treated as grayscale, rather than color.
The raw flag switches between binary (if non-zero), or hexadecimal (with a leading “0x”)
if zero.

RETURNS

int /* 0 = sucess, -1 = error */

EXAMPLE

The following example writes a 16-bit RGB video image from the capture buffer to a file:
FILE *fp;
int i, size = 640*480*2;
unsigned int *vbuff = (unsigned int *)malloc(size);

getVideoImage(0, 0, 640, 480, (unsigned char *)vbuff);
fp = fopen(“myfile”, “w”);
size /= 4; /* convert count from bytes to 32-bit words */
for (i=0; i<size; i++)
 writeRGB16(*vbuff++, fp, 0, 1);
free(vbuff);

INCLUDE FILES

sdl.h

SEE ALSO

getVideoImage(), writeRGB32(), writeYUV(), video capture example programs

SDL C Library Reference Manual 179

 writeRGB32
NAME

writeRGB32 – convert and write 32-bit pixels to a file

SYNOPSIS
int writeRGB32

(
unsigned int pixel, /* 32-bit word from framebuffer */
void *fp, /* FILE pointer */
int gray, /* grayscale flag */
int raw /* raw data write flag */
)

DESCRIPTION

This function converts the 32-bit word, pixel, into three 8-bit bytes (8-8-8 RGB), which are
wriiten to the file specified by fp. Byte swapping is done on pixel if required by the CPU
architecture. If gray is non-zero, the image data is treated as grayscale, rather than color.
The raw flag switches between binary (if non-zero), or hexadecimal (with a leading “0x”)
if zero.

RETURNS

int /* 0 = sucess, -1 = error */

EXAMPLE

The following example writes a 32-bit RGB video image from the capture buffer to a file:
FILE *fp;
int i, size = 640*480*2;
unsigned int *vbuff = (unsigned int *)malloc(size);

getVideoImage(0, 0, 640, 480, (unsigned char *)vbuff);
fp = fopen(“myfile”, “w”);
size /= 4; /* convert count from bytes to 32-bit words */
for (i=0; i<size; i++)
 writeRGB32(*vbuff++, fp, 0, 1);
free(vbuff);

INCLUDE FILES

sdl.h

SEE ALSO

getVideoImage(), writeRGB16(), writeYUV(), video capture example programs

180 SDL C Library Reference Manual

writeYUV
NAME

writeYUV – convert and write 16-bit YUV format pixels to a file

SYNOPSIS
int writeYUV

(
unsigned int pixel, /* 32-bit word from framebuffer */
void *fp, /* FILE pointer */
int gray, /* grayscale flag */
int raw /* raw data write flag */
)

DESCRIPTION

This function converts the 32-bit word, pixel, into two 16-bit (YUV) pixels, which are
wriiten to the file specified by fp. Byte swapping is done on pixel if required by the CPU
architecture. If gray is non-zero, the image data is treated as grayscale, rather than color.
The raw flag switches between binary (if non-zero), or hexadecimal (with a leading “0x”)
if zero.

RETURNS

int /* 0 = sucess, -1 = error */

EXAMPLE

The following example writes a YUV video image from the capture buffer to a file:
FILE *fp;
int i, size = 640*480*2;
unsigned int *vbuff = (unsigned int *)malloc(size);

getVideoImage(0, 0, 640, 480, (unsigned char *)vbuff);
fp = fopen(“myfile”, “w”);
size /= 4; /* convert count from bytes to 32-bit words */
for (i=0; i<size; i++)
 writeYUV(*vbuff++, fp, 0, 1);
free(vbuff);

INCLUDE FILES

sdl.h

SEE ALSO

getVideoImage(), writeRGB16(), writeRGB32(), video capture example programs

SDL C Library Reference Manual 181

Index

arc 18
arc2 19
boardOK 20
boardTemp 21
capture 139
checkDma 140
circle 22
clearScreen 23
closeGraphics 24
Code Size 129, 130
colorKey 141
copyImage 25
copyPage 26
copyPageImage 27
dashedLine 28
dashedPolyline 29
dashedRectangle 30
decoderFrameIRQ 142
decoderFrameIRQClear 143
doubleBuffer 144
drawPixel 31
drawText 32
ellipse 33
enableDecoderIRQ 145
enableStereo 34
enableVBlankIRQ 146
filledArc 35
filledArc2 36
filledCircle 37
filledEllipse 38
filledPolygon 39
filledRectangle 40
flushKeyboard 41
flushMouse 42
Fonts 125, 126
Function Summary 14
Function Summary (Video) 137
getCapBuffSize 147
getColor 43
getDisplayBuffer 148
getFontStruct 44
getFrameBufPtr 45
getImage 46
getMouseXY 47
getPixel 48
getTextWidth 49
getVideoFramebufPtr 149
getVideoImage 150
grabFrame 151
Graphics Programming Example 9
Header Files 95, 112
initCapture 152
initGraphics 50
interlace 153
keyboardRead 51
keyboardReady 52
lastBuffer 154

182 SDL C Library Reference Manual

line 53
Mouse 131
mouseCursorOn 54
mouseCursorXY 55
mouseRead 56
mouseReady 57
mouseRect 58
mouseScale 59
panelType 60
playback 155
polyline 61
putImage 62
putVideoImage 156
rectangle 63
setArcMode 64
setBackground 65
setCaptureSize 157
setClipRect 66
setColorKey 158
setDashOffset 67
setDashPattern 68
setDashStyle 69
setDisplayBuffer 159
setDisplayPage 70
setFillRule 71
setFillStyle 72
setFont 73
setForeground 74
setGraphicsDevice 75
setLineWidth 77
setMode 78
setMouseCursor 79
setMousePage 80
setMouseParam 81
setOrigin 82
setPanStart 83
setPattern 84
setPatternOrigin 85
setPixelProcessing 86
setTextDirection 87
setTiming 88
setTransparency 89
setVideoCaptureConfig 160
setVideoCropOfset 162
setVideoDeviceConfig 163
setVideoDisplayRect 165
setVideoFormatRect 166
setVideoPanStart 167
setVideoSourceRect 168
setVirtualSize 90
setWritePage 91
startDma 169
stopDma 170
storeColor 92
syncControl 93
vBlankIRQ 171
vBlankIRQClear 172
Video Capture 133
Video Capture Programming Example 134
videoBrightness 173
videoContrast 174
videoHue 175
videoSatU 176
videoSatV 177

SDL C Library Reference Manual 183

videoSelect 178
waitForFrame 179
waitForSync 180
writeRGB16 181
writeRGB32 182
writeYUV 183

